
Template-Based Content ODP Instantiation?

Karl Hammar1,2 and Valentina Presutti3

1 Department of Computer Science and Informatics, Jönköping University, Sweden
2 Department of Computer and Information Science, Linköping University, Sweden

karl.hammar@ju.se
3 Semantic Technology Lab, ISTC-CNR, Italy

valentina.presutti@istc.cnr.it

Abstract. Content Ontology Design Patterns (CODPs) are typically
instantiated into a target ontology or ontology module through a process
of specialisation of CODP entities. We find, from experiences in three
projects, that this approach leads to ontologies that are unintuitive to
some non-expert ontologists. An approach where CODPs are used as
templates can be more suitable when constructing ontologies to be used
or modified by such users, and we propose a method for such template-
based ODP instantiation. We evaluate this method with positive results,
and describe a tool that supports the use of the proposed method.

Keywords: Content Ontology Design Pattern, eXtreme Design, Tem-
plate, Usability

1 Introduction

Content Ontology Design Patterns (CODPs) were introduced by Gangemi [7]
and Blomqvist & Sandkuhl [2] in 2005, as a means of simplifying ontology de-
velopment by packaging known good practices into reusable blocks of ontology
functionality. Adopting CODPs and the associated eXtreme Design (hereafter
XD) Ontology Engineering methodology allow developers to reuse these known
good solutions to modelling problems, and thus enables developers to work in a
more efficient manner.

The idea of using CODPs to support Ontology Engineering has subsequently
gained traction within the academic community, as evidenced by the Workshop
on Ontology Patterns series of workshops held in conjunction with the Interna-
tional Semantic Web Conference4, and the recent formation of the Association
for Ontology Design & Patterns (ODPA)5. Studies also indicate that CODP
usage can help lower the number of modelling errors and inconsistencies in on-
tologies, and that they are by the users perceived as useful and helpful [1,3].

? This work was partly financed by the EU FP7 project Visual Analytics for Sense-
making in Criminal Intelligence Analysis (VALCRI) under grant number FP7-SEC-
2013-608142.

4 http://ontologydesignpatterns.org/wiki/WOP:Main
5 http://ontologydesignpatterns.org/wiki/ODPA

http://ontologydesignpatterns.org/wiki/WOP:Main
http://ontologydesignpatterns.org/wiki/ODPA


2 Karl Hammar and Valentina Presutti

A key step in employing the XD method lies in the instantiation and adap-
tation of a CODP building block (essentially a generic reusable mini-ontology)
into an ontology module fit for solving the concrete modelling problem at hand.
Per established practice this step typically consists of importing the building
block into the target module using the owl:imports predicate and then, based
on the existing classes and properties within that building block, specialising
it by creating subclasses and subproperties that encapsulate domain semantics
[11]. In the following, this way of instantiating CODPs will be referred to as
Specialisation-based.

The Specialisation-based approach is well-known and understood by CODP
researchers. However, the authors have in several recent projects noted sets of
users who have different preferences regarding how CODPs should be reused –
for these people the use of the Specialisation-based approach reduces the usabil-
ity of the resulting CODP-based ontologies. An alternative approach to CODP
instantiation is that of using the CODP building block as a template that is
instantiated into the target ontology module by way of copying and renam-
ing its constituent classes and properties [11]. We will call this Template-based
CODP instantiation. The Template-based approach carries with it advantages
and disadvantages, that may make it more or less palatable depending on the in-
tended XD development context and ontology users. This paper reports on three
projects in which CODPs have been used, the experiences from which motivate
the need for better supporting the Template-based approach. It also reports an
initial evaluation comparing the Specialisation-based and Template-based ap-
proaches based on resulting ontology usability and modifiability, and introduces
newly developed tooling supporting Template-based CODP instantiation.

The rest of this paper is organised as follows: Section 2 introduces the foun-
dations of CODPs and CODP usage methods. Section 3 describes the authors’
experiences of applying XD and the Specialisation-based CODP instantiation
approach that motivate this work, and presents the alternate Template-based
approach. Section 4 describes an evaluation of the Template-based approach to
CODP instantiation. Section 5 presents the authors’ recent work on a tool to
support this new approach, and Section 6 concludes the paper.

2 Related Work

The following section introduces the eXtreme Design method for CODP-based
ontology construction, and two alternative methods to CODP formalisation and
use.

2.1 Content Pattern use with XD

eXtreme Design (XD) is defined as “a family of methods and associated tools,
based on the application, exploitation, and definition of Ontology Design Patterns
(ODPs) for solving ontology development issues” [12, p. 83]. In XD, CODPs are
essentially seen as mini-ontologies that fulfill certain criteria: they are small and



Template-Based Content ODP Instantiation 3

autonomous, they are expressed in OWL, they are non-trivial in complexity (i.e.,
not only single classes or properties), they are cognitively relevant (i.e., intuitive
to domain experts), they encode best practices (i.e., are both of high quality and
reusable), etc [11].

Project initiation 
and scoping

Identify CODP 
catalogues

Collect 
requirement 

stories

Select story

Elicit 
requirements

Select set

Match and 
select ODPs

Instantiate and 
integrate ODPs

Test module

Release module

Integrate partial 
solutions, 

evaluate, revise

Release new 
version

All req:s 
covered?

All stories 
covered?

No

No
Yes

Fig. 1. XD Workflow (adapted from [12])

The XD method consists of a number of tasks, as illustrated in Figure 1.
The first three tasks deal with establishing a project context, identifying a set of
candidate CODP portals on the Web, and collecting initial requirements in the
form of a prioritised list of user stories. The subsequent tasks are performed in
developer pairs (these tasks are in Figure 1 enclosed in a grey box). A pair begins
by selecting the top prioritised user story that has not yet been handled, and
transform that story into more formally expressed requirements in the form of
competency questions, contextual statements, and reasoning requirements. They
then select a subset of these formal requirements relating to the same problem
area or set of domain concepts, and try to find an existing CODP that can be
used to fulfill the requirements. There may be multiple such CODPs found, in
which case the development pair selects one based on their understanding of the
problem domain and the modelling consequences associated with each matching
pattern. The selected pattern is instantiated and integrated into the ontology
module under development. The module is tested against the selected require-
ments, to ensure that it covers them properly. The next set of requirements from
the same user story is then selected, a pattern found, adapted, and integrated,
and so on. Once all requirements associated within one user story have been
handled, the module is released and integrated with the prior ontology version
(if one exists already) to form a new ontology release[12,11].

XD defines a set of operations on CODPs, e.g. CODP import (using the na-
tive owl:imports predicate), CODP specialisation (narrowing the semantics of
the CODP by constructing new classes and properties aligned to CODP entities



4 Karl Hammar and Valentina Presutti

using rdfs:subClassOf and rdfs:subPropertyOf), and CODP composition (align-
ing two CODPs or CODP-based ontology modules using subsumption, equiva-
lence, or disjointness axioms). The CODP instantiation and integration step in
Figure 1 is in XD assumed to use these operations, but an CODP cloning-based
approach is also mentioned, along with certain advantages (decreased import
closure in the resulting ontology module) and disadvantages (lack of a shared
CODP language leading to reduced support for alignment against other CODP-
based ontologies) [11].

2.2 Application by Extension or Analogy

Falbo et al. [5] argue, and Ruy et al. [13] extend upon this argument, for a differ-
ent perspective on CODPs and their use. Per this view, CODPs6 can be divided
into those that are extracted from ontologies covering foundational concepts
(FOPs), and those that are extracted from domain-related ontologies (DROPs).
Neither FOPs nor DROPs have language-specific implementations (e.g., OWL
building blocks) – rather, they can be compared to Analysis Patterns [6], in that
they attempt to solve a particular modeling issue in a reusable manner, regardless
of technology stack used. Per this perspective, FOPs would typically be reused
by analogy, while DROPs would typically be reused by extension. The former
is analogous to Template-based CODP instantiation as discussed in this paper,
whereas the latter is analogous to Specialisation-based CODP instantiation.

While [5] and [13] exemplify both of these types of CODP use, they do not
evaluate the consequences of either approach, nor do they propose any specific
method including concrete steps a person (or machine) should take to perform
either. Further, we are uncertain as to whether the FOP-analogy and DROP-
extension pairing necessarily holds in all cases – in fact, we think that in many
cases it would for interoperability purposes be quite useful to extend founda-
tional concepts – while cloning (i.e., reuse by analogy) may be very useful when
adapting a domain-specific CODP to a related domain.

2.3 Encoding CODPs with OPPL

Yet another approach to formalising and using CODPs was developed in the
CO-ODE project. This approach builds on the Ontology Pre-Processing Lan-
guage (hereafter OPPL), a macro language initially designed to simplify rapid
transformation of large ontologies [4]. The OPPL macro engine can add and re-
move ontology entities and axioms based on variables that are selected from and
conditions that are evaluated against the existing ontology - in this way changes
to ontology structure can easily be performed repeatedly with precision.

6 The cited works argue that ontology patterns that include concepts or content are
disjoint from patterns that concern design issues, so they prefer the use of the term
Ontology Conceptual Pattern, rather than Content Ontology Design Pattern – but
for the sake of not confusing the reader unduly, we will in this paper stick with the
abbreviation CODP.



Template-Based Content ODP Instantiation 5

The same technique has been extended to formalise CODPs as OPPL macros[10].
These CODP macros contain unbound variables that the ontology developer fills
with existing or new ontology entities before executing the OPPL engine that in-
stantiates the CODP structures into the target ontology. Additionally, the CODP
version of the OPPL language and tooling adds features and syntax required to
better support CODP use cases, including user-friendly textual representation
of CODP macros, syntax allowing macros to call one another, and annotation
properties to embed metadata about CODP macro usage in target ontologies.

The OPPL-based approach to CODP use is technically impressive and from a
feature perspective it would likely complement the above discussed XD method
very well. All the same, OPPL-based CODP use has seen limited uptake in
practice. We speculate that the reasons for this includes some drawbacks that the
use of OPPL entails, namely the need to learn yet another language in addition
to RDFS/OWL and the lack of tool support for developing and maintaining
OPPL CODPs.

3 Template-Based CODP Instantiation

The following section recounts the authors’ experiences of applying CODPs in
projects which motivate thinking about CODP instantiation in a different way,
and describes an approach to CODP instantiation based on these experiences.

3.1 Motivation: Experiences of Applying XD

The authors have recently used XD and CODPs in three ontology engineering
projects involving developers new to ontologies or CODPs. These users can be
characterised by a high degree of technical skill and in the cases of low or no
experience of ontologies, they still had extensive experience of other types of
conceptual modelling. A recurring theme in all three cases is the difficulty that
these users have in understanding or agreeing with CODP-level entities that are
imported into their models.

VALCRI Project VALCRI7 intends to develop a system providing Visual
Analytics capabilities for law enforcement analysts, supporting investigative and
intelligence analysis. Ontologies are used for data integration purposes. A key
requirement on those ontologies is that they need to be easily understandable
by software developers. Another key requirement is that the developed system
and its ontologies should be easy to modify for deployment in different contexts.

The initial versions of the ontologies were developed mainly by partners with
extensive experience of Ontology Engineering work. CODPs were instantiated
into the target ontologies by import and specialisation. Challenges arose when
these initial ontologies needed to be communicated to and extended upon by the

7 Visual Analytics for Sense-making in Criminal Intelligence Analysis, EU FP7 project
608142



6 Karl Hammar and Valentina Presutti

non-expert ontology engineers in the project, e.g., professional software devel-
opers and researchers within other fields of computer science. These developers
all had extensive experience of data modelling, yet they found the developed
models unintuitive and poorly designed. Their complaints primarily concerned
two things:

1. Many foundational entities, that are brought in via transitive imports from
CODP building blocks do not immediately make sense in the target domain.
For instance, criminal involvement in crimes was modelled using the Par-
ticipantRole CODP, which in turn depends on the Situation CODP. As a
consequence of this choice, the Situation class was brought into the target
ontology as a high-level superclass. Developers expressed confusion and irri-
tation with this design, which they argued added unnecessary complexity, as
the requirements do not call for representing a general theory of situations.

2. CODP-level classes and properties, while being helpful in solving the mod-
elling problem at hand, are not named or labelled in a cognitively relevant
way for the target domain. For instance, even after being instructed in the
design of the set of reused CODPs, the developers still expressed dissatisfac-
tion that entities in these CODPs had generic names such as Agent rather
than the domain specific term Nominal8 that they were used to.

These complaints indicate that the initially developed ontologies do not fulfill
the above discussed requirement of being easy to understand by software devel-
opers. Neither were the developers comfortable with modifying these ontologies
for new uses or deployment contexts, seemingly due to not being confident that
they properly understood the initial ontology design.

IMSK Project The goal of the IMSK project9 was to integrate technologies
for security and surveillance to provide an easily reconfigurable system capable
of area security. Since the system needed to be easily reconfigurable for different
deployment contexts, one of the authors explored the possible use of CODP-
based modules as pluggable units of configuration, in workshops together with
project participants10.

At one particular workshop, three participants discussed the effects of owl:imports
statements in CODPs. Participant A considered imports of foundational con-
cepts helpful for validating the soundness of his own design. Participant C ex-
pressed an understanding of the tension between reuse and applicability pre-
sented by the import feature and large import closures. Participant B criticized
the use of imports on the grounds that the expansion of CODP size that such
imports imply negatively affects CODP usability, and on the grounds that the

8 A UK Police term indicating a person who is reported as being involved in a crime
in some role, including both suspected perpetrators and victims.

9 Integrated Mobile Security Kit, EU FP7 project 218038
10 For more details on the case, data analysis method, and other interesting findings,

please see [8]



Template-Based Content ODP Instantiation 7

base concepts included by imported patterns may be incompatible with one’s
own world view:

”I really have to know what is there and what does it mean. And maybe
it’s written with some other focus, some other direction, some other goal.
And I don’t believe in this general modeling of the universe that fits all
purposes.” – Participant B

Participant B also indicated that he would use the idea of a pattern as pre-
sented in a pattern catalogue and reimplement it, rather than reuse an existing
OWL building block, if that block contained too many imports or dependencies.
These differing opinions illustrate the tensions between and different preferences
on how to use CODPs, possibly grounded in different backgrounds (Participant
A had a background in ontologies that Participants B and C lacked).

The participants in this workshop were not required to adhere to the XD
method, but were free to use CODPs in whichever way they deemed most suitable
to solve the provided modelling problem. Without explicit guidance being given,
the intuitive way in which the developers instantiated CODPs was consistently
to first study an CODP’s design documentation, then draw that CODP on a
whiteboard, then modify that drawing to suit the specific modelling problem,
before finally attempting to encode that illustration into a solution using Protégé.
In spite of Participant A having extensive experience of working with Semantic
Web ontologies, the use of owl:imports to instantiate CODPs was never tried.

E-care@home Project The E-care@home project11 aims to improve home
healthcare for the elderly, using ICT-rich environments to measure, record, and
infer facts about people and their environment, that can be used for recommen-
dations, reminders, etc. In reviewing a CODP-based sensor ontology developed
in the project, the authors noticed that just like in the above two projects, cer-
tain classes and properties were included in the target ontology which were not
strictly speaking necessary in the target context. When questioned about this
design and about whether tooling or methods to support reuse without the need
to import such classes would be useful, the developer responsible for the ontology
in question responded:

”Definitely useful. I spent a considerable amount of time to find top-
level classes that provide the required links to already designed ones. The
lack of such tools is sensed. It can also decrease the rate of errors or
inconsistencies in our design.”

3.2 Benefits of Template-Based Instantiation

Before describing our approach we would like to emphasise that the idea under-
lying Template-Based CODP instantiation is not new; as mentioned in Section 2,

11 http://ecareathome.se

http://ecareathome.se


8 Karl Hammar and Valentina Presutti

similar approaches are discussed in prior work [11,5,13,10]. Such template-based
approaches have however not reached much adoption in the CODP community
and the effects of their use have not been explored sufficiently.

The cases described in Section 3.1 illustrate how a certain type of ontol-
ogy developers and users find the structures generated by the more common
Specialisation-based approach to be unintuitive and consequently ontologies con-
structed using this approach to be diffiult to understand and to modify. For these
users, a Template-based approach in which CODPs are instantiated by copying
and adapting CODP entities to the target domain semantics (and general CODP-
level concepts are left out of the resulting model) would be advantageous. Ad-
ditionally, a Template-based CODP instantiation approach carries with it other
advantages (and disadvantages) detailed below.

Template-based CODP instantiation does not require the target ontology to
import semantics from namespaces outside of project scope, so reduces the risk of
the target ontology breaking due to unforeseen changes outside of project scope.
This self-containedness also simplifies tool support implementation in tooling
that does not support the addition of owl:Imports axioms (i.e., WebProtégé) or
that needs to be able to work in an offline mode.

Further, we argue that when performing Template-based instantiation, the
ontology engineer in question becomes more familiar with the resulting module
than when they per the Specialisation-based approach reuse a whole block of
ontology functionality as-is. Consider the analogy of program code examples
taken from the web – rarely do developers reuse such code straight off, but more
typically, they use such examples in parts, adapting them to the target context,
and in this process, begin to understand and be comfortable with the code. We
argue that the same holds for CODPs; by copying and adapting an CODP to
the target domain, ontology engineers make it their own code, and this reduces
the complexity of and barrier to entry of subsequent debugging or refactoring
tasks. This is particularly important for non-expert ontology engineers.

Another advantage of the template-based approach is that the lack of CODP-
level entities in the target ontology makes it easier to validate that target on-
tology with domain experts who are not knowledge engineers, as the number of
entities with domain-irrelevant names decreaseas.

There are of course also disadvantages to this approach, or rather, advantages
to the Specialisation-based approach that the Template-based approach does
not share. In Specialisation-based instantiation, the direct reuse of CODPs by
owl:imports means that target ontologies that reuse the same CODPs (and RDF
data expressed according to these ontologies) are immediately interoperable,
not only in a conceptual sense, but also in that the same namespaces are used
for shared concepts, which may simplify ontology integration and data sharing.
This advantage could also be achieved in Template-based instantiation through
alignment of local cloned CODPs to the original source CODPs, but it would
then require OWL-level reasoning to be executed in order to achieve the same
result, which may not be suitable in all cases. Further, in Specialisation-based
instantiation, higher-level classes and properties are defined only once, while



Template-Based Content ODP Instantiation 9

in Template-based instantiation pattern entities will be instantiated into the
target ontology multiple times – which may complicate maintainability, and,
particularly if done manually, may increase the risk of inconsistency.

3.3 Proposed Method of Instantiation

If CODP tooling supporting Template-based instantiation is to be developed,
we need to specify what concrete steps should be taken, in which order, when
instantiating CODPs in this manner. Below, we list a series of steps that have
worked well in initial trials with some commonly used patterns. Due to the
variance in structure of published CODPs, the below steps do not in all cases
transfer all semantics from the source CODP (including its entire transitive
import closure) to the target model – in some cases, additional modelling steps
may be required. In the below ”copy” implies cloning entities and associated
class restrictions into a new namespace.

1. Copy CODP leaf classes into subclasses of owl:Thing in the target module. If
two leaf classes in the source CODP have some shared parent classes below
owl:Thing level, copy the least common subsumer also into the target module
as shared parent to the copied leaves.

2. Copy those object or datatype properties that have as domain or range such
classes as were copied above into the target module. For object properties:
narrow a potential unmatched half of the domain/range to the least common
subsumer or (in the case one does not exist) to leaf class level.

3. Copy (and similarly to above, narrow if it is an object property) any prop-
erties involved in class restrictions on classes copied in the first step above
and use these copied properties to create equivalent restrictions in the target
module.

4. Merge the resulting structure with existing entities in the target module,
using ontology matching techniques to find candidate matches.

As mentioned, the steps proposed above have worked well in initial testing,
but we have found some cases where they are insufficient and further manual
work will be needed. These cases include but are not limited to:

– CODPs where leaf classes may need to be instantiated twice (e.g., the Place
class in the Place CODP12, or the Object class in Time Indexed Part Of
CODP13).

– When higher-level (non-leaf) classes from a parent CODP are reused and
specialised in a child CODP the situation can arise that the child CODP
concepts are sibling leaves to parent CODP concepts, and consequently when
instantiating the child CODP, some leaf nodes can exist that are not intended
to be instantiated.

12 http://ontologydesignpatterns.org/wiki/Submissions:Place
13 http://ontologydesignpatterns.org/wiki/Submissions:TimeIndexedPartOf

http://ontologydesignpatterns.org/wiki/Submissions:Place
http://ontologydesignpatterns.org/wiki/Submissions:TimeIndexedPartOf


10 Karl Hammar and Valentina Presutti

4 Preliminary Evaluation

As discussed in Section 3.2, we believe that ontologies built using Template-based
CODP instantiation are easier to understand and easier to modify for a certain
group of non-expert users than those built using Specialisation-based instantia-
tion. In order to evaluate this proposition, a small study was run at a workshop
within an ontology engineering research project at Jönköping University. The
study had five participants, all academics within Computer Science or related
topics. The participants had all used ontologies, but only two participants had
actually constructed ontologies themselves, and these two were beginners to the
task, the project in question being the first project where they had done such
work. None of the participants had worked with XD or CODPs previously.

For evaluation we constructed two sets of ontology requirements, and for
each of these, we created two CODP-based ontology variants (one Template-
based, and one Specialisation-based)14. The Specialisation-based variants were
constructed using the XD method as described in Section 1, while the Template-
based variants were constructed strictly adhering to the method proposed in
Section 3.3. The workshop participants were given a tutorial on CODPs, XD,
and the specific CODPs that the ontology variants had been constructed from.
They were then given three tasks to perform individually:

1. Task 1: For requirement set A, answer which competency questions out of
seven provided that the two ontology variants can answer.

2. Task 2: For requirement set B, answer which competency questions out of
nine provided that the two ontology variants can answer.

3. Task 3: For the requirement set A, modify the two ontology variants by
adding four object properties, specialising some of the more generic proper-
ties already in place.

After each task, the users were surveyed on which of the two ontology variants
they found easiest to understand or to modify, or whether they found the two
equally easy/difficult. The results of these surveys and the total percentage of
correct answers to Tasks 1 and 2 given by the participants are provided in
Table 1. Note that since not all users finished all tasks within the workshop
time-frame, the answer frequency drops in Tasks 2 and 3.

Table 1. Evaluation Results

Task 1 Task 2 Task 3

Template-based easiest 4 2 3
Equally easy/difficult 1 2 0
Specialisation-based easiest 0 0 0
Correct answer rate 83 % 81 %

14 Available at http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-30172

http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-30172


Template-Based Content ODP Instantiation 11

Obviously a study as limited as this is insufficient to conclusively evaluate
the hypotheses provided above, and the generalisability of the findings is lim-
ited. All the same, we find it interesting to note that the method proposed in
Section 3.3 can be followed in practice to generate ontologies that work, and
that of the experiment participants, not a single one reported that the ontolo-
gies constructed using the traditional Specialisation-based approach to CODP
instantiation were the easiest or most helpful. We believe that these findings
clearly motivate additional study of instantiation method effects, as well as the
development of new CODP tools supporting Template-based instantiation.

5 Tool Support

In light of the findings reported in Section 4 we are presently developing tooling
to support Template-based CODP instantiation. This new tooling builds on our
earlier WebProtégé extension titled XDP [9], which includes a CODP search
engine, CODP browser, and a CODP instantiation wizard. In the new version of
XDP15 we have extended the instantiation wizard, adding a step where the user
selects which CODP instantiation method (Specialisation-based or Template-
based) they wish to adhere to. In the case that the Template-based approach is
selected, a new user interface (Figure 2) is presented where the user labels the
classes and properties that will be copied into the target ontology module. Those
classes and properties are selected using the method proposed in Section 3.3.

Fig. 2. XDP Template-based CODP Instantiation UI displaying the Bag CODP

15 Available from http://github.com/hammar/webprotege

http://github.com/hammar/webprotege


12 Karl Hammar and Valentina Presutti

6 Conclusions

In this paper we have presented our experiences of developing ontologies with
CODPs in collaboration with non-expert ontologists, noting that current prac-
tices introduce ontology structures which certain users find unintuitive to un-
derstand. We have explored an alternative Template-based approach and sug-
gested some consequences of applying this approach (resulting ontologies are
self-contained and more robust, they are easier to understand and modify for
non-experts, and easier to validate by domain experts). We have studied some of
those effects (those concerning ease of understanding and modification by non-
experts) in a preliminary evaluation with positive initial results, and we have
constructed tooling to support the Template-based approach in WebProtégé.

References

1. Blomqvist, E., Gangemi, A., Presutti, V.: Experiments on Pattern-based Ontol-
ogy Design. In: Proceedings of the Fifth International Conference on Knowledge
Capture. pp. 41–48. ACM (2009)

2. Blomqvist, E., Sandkuhl, K.: Patterns in Ontology Engineering: Classification of
Ontology Patterns. In: Proceedings of the 7th International Conference on Enter-
prise Information Systems. pp. 413–416 (2005)

3. Dzbor, M., Suárez-Figueroa, M.C., Blomqvist, E., Lewen, H., Espinoza, M.,
Gómez-Pérez, A., Palma, R.: D5.6.2 Experimentation and Evaluation of the NeOn
Methodology. Tech. rep., NeOn Project (2007)

4. Egana, M., Antezana, E., Stevens, R.: Transforming the axiomisation of ontologies:
The ontology pre-processor language. Proceedigns of OWLED (2008)

5. Falbo, R.A., Guizzardi, G., Gangemi, A., Presutti, V.: Ontology patterns: clarifying
concepts and terminology. In: Proceedings of the 4th International Conference on
Ontology and Semantic Web Patterns. CEUR-WS. org (2013)

6. Fowler, M.: Analysis patterns: reusable object models. Addison-Wesley Profes-
sional (1997)

7. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: The Se-
mantic Web–ISWC 2005. pp. 262–276. Springer (2005)

8. Hammar, K.: Ontology design patterns in use: lessons learnt from an ontology
engineering case. In: Workshop on Ontology Patterns in conjunction with the 11th
International Semantic Web Conference 2012 (ISWC 2012) (2012)

9. Hammar, K.: Ontology design patterns in webprotégé. In: 14th International Se-
mantic Web Conference (ISWC-2015). CEUR Workshop Proceedings (2015)

10. Iannone, L., Rector, A., Stevens, R.: Embedding knowledge patterns into owl. In:
The Semantic Web: Research and Applications, pp. 218–232. Springer (2009)

11. Presutti, V., Blomqvist, E., Daga, E., Gangemi, A.: Pattern-Based Ontology De-
sign. In: Ontology Engineering in a Networked World, pp. 35–64. Springer (2012)

12. Presutti, V., Daga, E., Gangemi, A., Blomqvist, E.: eXtreme Design with Content
Ontology Design Patterns. In: Proceedings of the Workshop on Ontology Patterns
(WOP), collocated with International Semantic Web Conference (ISWC) (2009)

13. Ruy, F.B., Reginato, C.C., Santos, V.A., Falbo, R.A., Guizzardi, G.: Ontology
engineering by combining ontology patterns. In: Conceptual Modeling, pp. 173–
186. Springer (2015)


	Template-Based Content ODP Instantiation

