
An Algorithm, Implementation and Execution
Ontology Design Pattern

Agnieszka Lawrynowicz1, Diego Esteves2, Panče Panov3, Tommaso Soru2, Sašo
Džeroski3 and Joaquin Vanschoren4

1 Faculty of Computing, Poznan University of Technology, Poznan, Poland
2 AKSW, University of Leipzig, Germany

3 Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
4 Eindhoven University of Technology, The Netherlands

Abstract. This paper describes an ontology design pattern for mod-
eling algorithms, their implementations and executions. This pattern is
derived from the research results on data mining/machine learning on-
tologies, but is more generic. We argue that the proposed pattern will
foster the development of standards in order to achieve a high level of
interoperability among in silico scientific experiments. We describe the
intent of the pattern, provide competency questions and the pattern for-
malization. We also present an example instantiation of the pattern in
the machine learning domain.

Keywords: ODP, machine learning, data mining, interoperability

1 Introduction

Artificial Intelligence has become an important area for data scientists in re-
search and business contexts. A wide range of algorithms, implementations and
tools have emerged to deal with particular problems, contributing greatly to the
progress and development of its sub-areas, such as Data Mining (DM) and Ma-
chine Learning (ML). These breakthroughs, however, have exposed a new gap:
how to properly represent and interchange this information among systems and
researchers?, for instance, how to differentiate Support Vector Machines (SVM)
implementations among existing tools. To address this problem (as well as other
interoperability issues), state of the art data mining and machine learning on-
tologies [7, 10, 14] and vocabularies [5] have been proposed.

In this paper, we describe an ontology design pattern (ODP) for modeling
algorithms, their implementations and executions, as well as produced outputs.
We aim at defining a logical interface to guide the design process of represent-
ing the generic triple defined by input, algorithm and output. One advantage
of this conceptual alignment is that it allows us to formalize conceptual defini-
tions, facilitating the metadata interchange process and fostering reproducible
research. Furthermore, we directly collaborate with a W3C Community Group5

5 https://www.w3.org/community/ml-schema/

which aims to define an upper level ontology which maps metadata from various
existing ML/DM schemata. In particular, all of the co-chairs of the group are
co-authors of this pattern paper. Finally, we argue that the proposed pattern
will stimulate the development of standards in order to achieve high level of
interoperability among scientific experiments. Thus, the proposed template pro-
vides guidance for supporting further developments of schemata that represent
this flow, ensuring their logical alignment.

This paper is structured as follows: we propose the design pattern in Section
2, and illustrate its use in Section 3. Next, we describe how it aligns with PROV-
based vocabularies in Section 4. Section 5 discusses the need and usefulness of
the proposed pattern, and Section 6 concludes.

2 The Algorithm-Implementation-Execution Ontology
Design Pattern

The Algorithm-Implementation-Execution Design Pattern6 is depicted in Fig 1.
The Algorithm class represents any algorithm regardless its software imple-

mentation. Implementation is an executable implementation of an algorithm, a
script, or a workflow (composite algorithm). The Execution class is an execution
of an implementation on a machine (computer). It is limited in time (has a start
and end point), and can be successful or failed.

Task is a formal description of a process that needs to be completed (e.g.
based on inputs and outputs), and any piece of work that needs to be addressed.

Input and Output are information entities, where the former is an input to
an Execution (e.g., some data), and the latter is an output of the Execution (e.g.,
some transformed data, the result of some computations etc.).

Parameter is a parameter of an implementation which is set before its exe-
cution. It is differentiated from Input in that it is a variable. ParameterSetting is
an entity which connects a parameter and its value that is being set before an
implementation execution.

2.1 Intent

The intent of the design pattern is to model algorithm specifications, their im-
plementations and executions. This includes also the parameters of implementa-
tions, settings of these parameters for a specific execution, as well as the inputs
that the execution consumes (e.g., data) and the outputs it produces (e.g., mod-
els, reports).

2.2 Competency Questions

The competency questions for the pattern were selected and refined based on the
previous research on ML/DM ontologies as well as discussed during the OpenML
6 http://ontologydesignpatterns.org/wiki/Submissions:

AlgorithmImplementationExecution

Fig. 1. The Algorithm-Implementation-Execution Ontology Design Pattern
.

Hackathon in 2016 in Lorentz Center, The Netherlands7 in which several of the
co-authors of the pattern participated. They are as follows:

– Which algorithm is implemented by this implementation?
– What are the implementations of this algorithm?
– Which implementation is executed?
– What are the parameters of this implementation?
– What are the parameter settings of particular parameters in this execution?
– What is the input to this implementation execution?
– What is the output produced by this implementation execution?
– What algorithm does this execution realize?
– What task does this execution achieves?
– What is the duration of this execution?
– What are the inputs this task is defined on?

7 http://openml2016.openml.org

2.3 Pattern Formalization
Below, we show the formalization of the pattern in description logic (DL) [2],
the logic underpinning the Web Ontology Language (OWL) [6]:

Algorithm v InformationEntity
Implementation v InformationEntity
Implementation v ∃implements.Algorithm
Implementation v ∃hasParameter.Parameter

Execution v Process
Execution v ∃hasInput.ParameterSetting
Execution v ∃realizes.Algorithm
Execution v ∃achieves.Task
Execution v ∃hasDuration.TimeInterval
Parameter v InformationEntity

ParameterSetting v InformationEntity
ParameterSetting v ∃specifiedBy.Parameter
ParameterSetting v ∃hasValue.rdfs : Literal

Input v InformationEntity
Output v InformationEntity

Task v InformationEntity
Task v ∃definedOn.Input

> v ∀hasInput.Input
> v ∀hasOutput.Output

We deliberately keep the axiomatization minimalistic to increase interoper-
ability between existing and future ontologies. For instance, existing, mentioned
ML/DM ontologies have bigger coverage and often more dense formalization,
and have been built with different purposes on mind.

3 Example Usage: Machine Learning Domain

In this section, we first illustrate our pattern with a simple scenario from the
ML domain with an example derived from the OpenML portal [15], after which
we discuss how the proposed pattern occurs in existing ML/DM ontologies and
schemas.

3.1 Example Scenario

Consider a scenario in the ML domain (illustrated in Figure 2). The scenario
deals with an ML task realization based on an example derived from the OpenML
portal. The referenced individuals can easily be looked up online.8

8 For instance, run 100241 can be found on http://www.openml.org/r/100241.

ML Task :task29 is a supervised classification task defined on the dataset
:credit-a. This task is achieved by the Execution :run100241 which executes
the Implementation :wekaLogistic of the Algorithm :logisticRegression which
this execution realizes.

The Implementation :wekaLogistic has five hyperparameters (Parameter):
:wekaLogisticC, :wekaLogisticDoNotCheckCapabilities, :wekaLogisticM,
:wekaLogisticOutputDebugInfo, :wekaLogisticR. The values of two of these
hyperparameters are set. The hyperparameter :wekaLogisticM has value set to
-1 (expressed via the ParameterSetting :wekaLogisticMSetting29), and the hy-
perparameter :wekaLogisticR that has its value set to "1.0E-8"ˆˆxsd:float
(expressed via the ParameterSetting :wekaLogisticRSetting29).

The Execution :run100241 has as Input the :credit-a dataset and the pa-
rameter settings and its Output is the ML model :wekaLogisticModel100241.

Fig. 2. Example usage of the pattern in ML domain.

3.2 Example: The occurrence of the pattern in the MEX
Vocabulary

The MEX vocabulary has been designed to reuse existing ontologies (i.e., PROV-
O9, Dublin Core10, and DOAP11) for representing basic machine learning infor-
mation. The aim is not to describe a complete data-mining process, which can
be modeled by more complex and semantically refined structures [4, 7, 14, 16].
Instead, MEX is designed to provide a simple and lightweight vocabulary for
exchanging machine learning metadata in order to achieve a high level of inter-
operability as well as supporting data management for ML outcomes. Figure 4
depicts an excerpt of the interlinked classes representing the implementation of
the proposed pattern.

9 https://www.w3.org/TR/prov-o/
10 http://dublincore.org/documents/dcmi-terms/
11 http://usefulinc.com/doap/

Fig. 3. The Evolution of the Metadata Generation Process: from no machine-readable
scenarios (1) and free-style descriptions (2) until more refined structures for represent-
ing ML/DM metadata (5).

Fig. 4. An excerpt of MEX Vocabulary representing the pattern “algorithm-
implementation-execution”

3.3 Example: The occurrence of the pattern in the DMOP ontology

The Data Mining OPtimization Ontology (DMOP) [7] has been developed with
a primary use case in meta-mining, that is meta-learning extended to an analysis
of full DM processes. At the level of both single algorithms and more complex
workflows, it follows a very similar modeling pattern as our proposed ODP (see
Figure 5).

Fig. 5. The occurrence of the proposed pattern in the Data Mining OPtimization
Ontology.

3.4 Example: The occurrence of the pattern in the OntoDM-core
ontology

For the domain of data mining there are several developed ontologies, with the
aim of providing formal descriptions of domain entities. One of the proposed
ontologies is the OntoDM-core ontology [10]. In one of the preliminary versions
of the ontology [9], the authors decided to align the proposed ontology with the
Ontology of Biomedical Investigations (OBI) [3] and consequently with the Basic
Formal Ontology (BFO) at the top level [1], in terms of top-level classes and the
set of relations. That was beneficial for structuring the domain in a more elegant
way and the basic differentiation of information entities, implementation entities
and processual entities.

In this context, the authors proposed a horizontal description structure that
includes three layers: a specification layer, an implementation layer, and an ap-
plication layer. In Fig. 6, we present examples of OntoDM-core classes from all
three layers. The specification layer in general contains information entities. In
the domain of data mining, example classes are data mining task and data min-
ing algorithm. The implementation layer in general contains qualities and entities

that are realized in a process, such as parameters and implementations of algo-
rithms. The application layer contains processual classes, such as the execution
of the data mining algorithm. These layers were preserved in ontologies that
build on OntoDM, such as Exposé [13], which underlies the OpenML platform.

Fig. 6. The horizontal three layer description structure of the OntoDM-core ontology
showing the occurrence of the proposed pattern. The example classes are represented
by rectangles with rounded corners. The ontological relations between classes are rep-
resented with directed labeled arrows. Unlabeled arrows represent is-a relations.

The idea of having all three layers represented separately in the ontology
was to facilitate different uses of the ontology. For example, the specification
layer can be used to reason about data mining algorithms; the implementation
layer can be used for search over implementations of data mining algorithms and
to compare various implementations; and the application layer can be used for
searching through executions of data mining algorithms.

It is evident that there is large similarity of the design structure proposed
in the OntoDM-core ontology with the proposed ontology pattern. First, there
is the same differentiation between information entities, implementation entities
and processual entities. Second, there is a clear mapping of the relations that are
used to describe the entities. Finally, since OntoDM-core is strongly aligned with
the OBI ontology, the same pattern occurs for connecting plan specifications,
plans and planned processes as is illustrated in Fig. 7.

Table 1 shows mappings of the terms from the different machine learning or
data mining ontologies and vocabularies to the proposed pattern.

Fig. 7. The occurrence of parts the proposed pattern in the Ontology of Biomedical
Investigations for representing plan specifications, plans and planned processes.

4 Compatibility with PROV-based Vocabularies

Information about provenance has shown to play an important role in meta-
data descriptions. Therefore, providing compatibility with ontologies such as
PROV-O has recently become strongly recommended. In this section, we show
how PROV-based vocabularies can be aligned to the proposed design pattern by
introducing a use case dubbed LinkLion12, a central repository for the storage
of links among resources in the Web of Data. The main goal of LinkLion is to
facilitate the publication, retrieval and use of links between knowledge bases [8].
These links are collected in mappings that were generated by frameworks through
link-discovery algorithms, which are usually backed by machine- and statistical-
relational-learning techniques [11, 12].

How the two vocabularies align can be seen in Table 2. Since Algorithm
and Task are conceptual classes, they do not map to any PROV concept. On
the other hand, no information about prov:Agent can be modelled using our
pattern.

5 Discussion

The origin of the pattern. The examples from the ML/DM domain in this paper
illustrate the origin of the pattern. Due to the growth of ML/DM research, a
new challenge arises pertaining to data management and knowledge sharing of
scientific metadata. Even though each of the proposed approaches often pro-
vides some form of documentation, the models are often incompatible or hard to
12 http://www.linklion.org/

Table 1. Mapping of terms between different ontologies/vocabularies.

Pattern OntoDM-
core

DMOP
[7]

Exposé
[14]

KD Ontol-
ogy
[16]

KDDOnto
[4]

MEX vocab-
ulary [5]

Input DM-dataset DataSet dataset dataset dataset Dataset

Task data mining
task

DM-Task data mining
task

data mining
task

task N/A

Output generalization DM-Model
and DM-
Pattern Set

model and
pattern set

model model Model

Algorithm data mining
algorithm

DM-Algorithm algorithm
specification

algorithm algorithm Algorithm

Implementation data mining
algorithm
implementation

DM-Operator algorithm
implementation

N/A N/A Tool

Execution data mining
algorithm
execution

DM-Operation algorithm
application

algorithm
execution

N/A Execution

align. This gap affects tools and scientific software as well as vocabularies and
ontologies, i.e., it has an impact horizontally and vertically. Therewith, we face
an urgent need to devise patterns for representing data, especially metadata,
which are considered as a great asset for gaining insight in complex world sce-
narios [17]. By defining design patterns and agreeing on a common schema13 we
naturally achieve a high level for experimental representation in those domains.

Whereas, in practical terms, achieving interoperability among all ML/DM
tools can be considered as an utopian scenario due to business and financial is-
sues, tools can be built based on the proposed ODP for converting metadata be-
tween any existing ML/DM schema (eg.: mlschema.convert(’mex’, ’dmop’,
’ttl’) or vice-versa), to help achieve this goal among schemata of ML/DM.

Relation to other content ODPs. Besides the discussed origins and the ML/DM
domain where the proposed pattern is well grounded, we also note the rela-
tion of the proposed pattern to previously proposed ODPs, namely: Parameter,
BasicPlan, and BasicPlanExecution.

The Parameter ODP models parameters of a concept and their values. Dif-
ferent than in this pattern, we introduce further reification via a class Param-
eterSetting since we want to talk about parameters of some implementations
independently of their settings where there may be many of the latter ones
(specific to particular executions of an implementation).

The BasicPlan ODP also captures Agents who participate in some actions,
which is beyond our model. In our case, Implementation is most close to a plan
which is then executed to achieve a particular Task (a goal). In the BasicPlan
ODP those concepts are structured differently, i.e., it is the plan that defines
tasks and roles of an object (e.g. of an agent). Thus, a task in the BasicPlan
13 https://www.w3.org/community/ml-schema/

Table 2. Alignment between our pattern proposal, PROV-O, and the use case Lin-
kLion. Note that every LinkLion class subsumes the corresponding PROV-O class and
each PROV-O class subsumes a corresponding class from our pattern.

Pattern PROV-O LinkLion

Execution prov:Activity llont:Algorithm
Input prov:Entity void:Dataset
Output prov:Entity llont:Link, llont:Mapping
Implementation prov:Entity N/A
ParameterSetting prov:Entity N/A
hasInput prov:used prov:used
hasParameterSetting prov:used prov:used
executes prov:used prov:used
specifiedBy prov:wasDerivedFrom prov:wasDerivedFrom
hasOutput prov:wasGeneratedBy−1 prov:wasGeneratedBy−1

ODP is more fine-grained and it serves to achieve a goal where the latter one is
then understood more like our Task. BasicPlanExecution concerns executing a
plan which involves actions and their participants.

6 Conclusions

In this paper, we have proposed the Algorithm-Implementation-Execution On-
tology Design Pattern. This pattern has originated from, initially independent,
research of several groups on modeling the machine learning/data mining do-
main. We have shown how this pattern re-appears in the ML/DM ontologies
and schemas, and illustrated it with a practical examples of ML algorithm ex-
ecutions. However, the pattern is more generic and we have also discussed its
relation to PROV and scientific interoperability in a broader scope as well as to
existing ODPs.

Acknowledgements. Agnieszka Lawrynowicz acknowledges the support from the
National Science Centre, Poland, within the grant number 2014/13/D/ST6/02076.
Panče Panov and Sašo Džeroski acknowledge the support by the EC (FP7 framework
programme) within the grant ICT-2013-612944 MAESTRA.

References

1. Arp, R., Smith, B., Spear, A.D.: Building Ontologies with Basic Formal Ontology.
The MIT Press (2015)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, New York, NY, USA (2003)

3. Bandrowski, A., Brinkman, R., Brochhausen, M., Brush, M.H., Bug, B., Chibucos,
M.C., Clancy, K., Courtot, M., Derom, D., Dumontier, M., Fan, L., Fostel, J.,

Fragoso, G., Gibson, F., Gonzalez-Beltran, A., Haendel, M.A., He, Y., Heiskanen,
M., Hernandez-Boussard, T., Jensen, M., Lin, Y., Lister, A.L., Lord, P., Malone, J.,
Manduchi, E., McGee, M., Morrison, N., Overton, J.A., Parkinson, H., Peters, B.,
Rocca-Serra, P., Ruttenberg, A., Sansone, S.A., Scheuermann, R.H., Schober, D.,
Smith, B., Soldatova, L.N., Stoeckert, Jr., C.J., Taylor, C.F., Torniai, C., Turner,
J.A., Vita, R., Whetzel, P.L., Zheng, J.: The ontology for biomedical investigations.
PLoS ONE 11(4), 1–19 (04 2016), http://dx.doi.org/10.1371%2Fjournal.pone.
0154556

4. Diamantini, C., Potena, D.: Semantic annotation and services for KDD tools shar-
ing and reuse. In: ICDMW ’08: Proceedings of the 2008 IEEE International Con-
ference on Data Mining Workshops, pp. 761–770. IEEE Computer Society (2008)

5. Esteves, D., Moussallem, D., Neto, C.B., Soru, T., Usbeck, R., Ackermann, M.,
Lehmann, J.: MEX vocabulary: a lightweight interchange format for machine learn-
ing experiments. In: Proceedings of the 11th International Conference on Semantic
Systems, SEMANTICS 2015, Vienna, Austria, September 15-17, 2015. pp. 169–176
(2015), http://doi.acm.org/10.1145/2814864.2814883

6. van Harmelen, F., McGuinness, D.: OWL web ontology language overview.
W3C recommendation, W3C (Feb 2004), http://www.w3.org/TR/2004/REC-owl-
features-20040210/

7. Keet, C.M., Lawrynowicz, A., d’Amato, C., Kalousis, A., Nguyen, P., Palma, R.,
Stevens, R., Hilario, M.: The data mining optimization ontology. J. Web Sem. 32,
43–53 (2015), http://dx.doi.org/10.1016/j.websem.2015.01.001

8. Nentwig, M., Soru, T., Ngomo, A.C.N., Rahm, E.: Linklion: A link repository for
the web of data. In: European Semantic Web Conference. pp. 439–443. Springer
(2014)

9. Panov, P., Soldatova, L.N., Džeroski, S.: Towards an Ontology of Data Mining
Investigations, pp. 257–271. Springer Berlin Heidelberg, Berlin, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-04747-3_21

10. Panov, P., Soldatova, L.N., Dzeroski, S.: Ontology of core data mining entities.
Data Min. Knowl. Discov. 28(5-6), 1222–1265 (2014), http://dx.doi.org/10.
1007/s10618-014-0363-0

11. Soru, T., Ngomo, A.C.N.: Active learning of domain-specific distances for link
discovery. In: Joint International Semantic Technology Conference. pp. 97–112.
Springer (2012)

12. Soru, T., Ngomo, A.C.N.: A comparison of supervised learning classifiers for link
discovery. In: Proceedings of the 10th International Conference on Semantic Sys-
tems. pp. 41–44. ACM (2014)

13. Vanschoren, J., Soldatova, L.: Exposé: An ontology for data mining experiments.
Proceedings of the ECML’10 International workshop on Service-oriented Knowl-
edge Discovery pp. 31–46 (2010)

14. Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G.: Experiment databases - A
new way to share, organize and learn from experiments. Machine Learning 87(2),
127–158 (2012), http://dx.doi.org/10.1007/s10994-011-5277-0

15. Vanschoren, J., Van Rijn, J.N., Bischl, B., Torgo, L.: Openml: networked science
in machine learning. ACM SIGKDD Explorations Newsletter 15(2), 49–60 (2014)

16. Žáková, M., Kremen, P., Železný, F., Lavrač, N.: Automating knowledge discov-
ery workflow composition through ontology-based planning. IEEE Transactions on
Automation Science and Engineering 8(2), 253–264 (2010)

17. Widmer, G.: Discovering simple rules in complex data: A meta-learning algorithm
and some surprising musical discoveries. Artificial Intelligence 146(2), 129–148
(2003)

