
Adapting Ontologies to Content Patterns using
Transformation Patterns

Vojtěch Svátek, Ondřej Šváb-Zamazal, and Miroslav Vacura

Department of Information and Knowledge Engineering,
University of Economics, W. Churchill Sq.4, 130 67 Prague 3, Czech Republic

{svatek|ondrej.zamazal|vacuram}@vse.cz

Abstract. Ontology content patterns are meant to be used not only for
new ontologies but also for reengineering of existing ontologies. However,
the modelling style of such ontologies often differs from the best-practice
pattern that is to be imported to their root portions, which makes the
integration of the two models time-consuming and error-prone. We ex-
plore how the recently developed PatOMat transformation framework
could be applied to ease the adaptation of ‘legacy’ ontologies to a widely
used content pattern from the OntologyDesignPatterns.org library. We
also investigate the link between transformation choices and logical pat-
terns as those earlier proposed by the W3C SWBPD Group.

1 Introduction

Ontology content patterns [4] are nowadays considered as a central artifact for
promoting best practices and supporting shareability in ontology design. Al-
though, ideally, content patterns (CPs, for brevity) should be taken into account
from the very start of the design process, it is a common situation that the au-
thors of the ontology are, at the onset, either unaware of the existence of CPs
at all or too novice to choose the right one. The CPs then only enter the design
process at a later phase, when at least a prototype of the ontology already exists,
and their adoption has the nature of ontology reengineering.

In the easiest setting, generic CPs can be (as kind-of foundational ontology
fragments) ‘passed under’ the current root concepts of the ontology. However,
as the same conceptualisation can be expressed using different modelling styles
in a language such as OWL,1 the need for style transformations may often arise.
A straightforward example of such transformation is change from ‘class-centric’
to ‘property-centric’ style, or vice versa, considering that the same notion can
be modelled as a class (e.g. ‘Purchase’) or an object property (‘bought from’).

In our previous work on the PatOMat project,2 we already addressed the
general need for style transformation in ontological engineering. A general frame-
work, a simple transformation pattern language, and a set of RESTful services
1 In our framework we implicitly assume the use of OWL (possibly in version OWL 2

[6]) as ontology language.
2 http://patomat.vse.cz

(relying on external tools such as OPPL and OWL-API, see Section 2) have
been developed, and thoroughly exemplified for an ontology matching scenario
in [11]: having two ontologies to be matched, we can transform the modelling
style of the one so as to make automated matching to the other easier.

The new scenario in this paper is rather one related to ontology import. How-
ever, compared to the generic scenario of either matching or importing an arbi-
trary ontology into another one, we consider here a particular, small and widely
reusable ontological component—a content pattern—to which an existing ‘provi-
sional’ ontology is adapted in order to gain both in rigour and comprehensibility.

The rest of the paper is structured as follows. Section 2 briefly reviews the
PatOMat framework, transformation language and implemented prototype ser-
vices, as described in [11]. Section 3 summarises the ontology matching scenario
from [11], and introduces the new scenario of importing a CP into a prototype
ontology. Section 4 presents the specific input setting of our case study: the
AgentRole pattern from the OntologyDesignPatterns.org library, and the Con-
fOf ontology from the OntoFarm collection. Section 5 discusses the dimensions
of ontology transformation wrt. AgentRole, which relate to the source pattern,
target pattern, and additional axioms in the source ontology. Section 6 shows
an XML serialisation of a (selected) relevant transformation pattern. Finally,
Section 7 surveys some related work, and Section 8 wraps up the paper.

2 Overview of the PatOMat Transformation Framework

The central notion in the PatOMat framework3 is that of transformation pattern
(TP). A TP contains two ontology patterns (the source OP and the target OP)
and the description of transformation betweem them, called pattern transforma-
tion (PT). The representation of OPs is based on the OWL 2 DL profile. How-
ever, while an OWL ontology refers to particular entities, e.g. to class Person, in
the patterns we generally use placeholders. Entities are specified (i.e. placehold-
ers are instantiated) at the time of instantiation of a pattern. An OP consists of
entity declarations, axioms, and naming detection patterns; the last capture the
naming aspect of the OP important for its detection. A PT consists of a set of
transformation links and a set of naming transformation patterns. Transforma-
tion links are either logical equivalence relationships or extralogical relationships
holding between two entities of different type. Naming transformation patterns
serve for generating new names for old or newly created entities. Naming pat-
terns range from passive naming operations such as detection of a head noun for
a noun phrase to active naming operations such as derivation of verb form of a
noun. The framework prototype implementation consists of three core services:4

– The OntologyPatternDetection service takes the transformation pattern and
a particular original ontology on input, and returns the binding of entity

3 [11] provides more details about the framework, and at http://owl.vse.cz:8080/

tutorial/ there is a fully-fledged tutorial for the current version.
4 All accessible via the web interface at http://owl.vse.cz:8080/.

placeholders on output, in XML. The structural/logical aspect is captured
in the structure of an automatically generated SPARQL query; the naming
aspect is dealt with based on its description within the source pattern.

– The InstructionGenerator service takes the particular binding of placehold-
ers and the transformation pattern on input, and returns particular transfor-
mation instructions on output, also in XML. Transformation instructions are
generated according to the transformation pattern and the pattern instance.

– The OntologyTransformation service takes the particular transformation in-
structions and the particular original ontology on input, and returns the
transformed ontology on output.

The third service is partly based on OPPL [2] and partly on our specific im-
plementation over OWL-API.5 Currently we use OPPL for the operations on
axioms and for adding entities, and OWL-API for re/naming entities according
to naming transformation patterns and for adding OWL annotations. As far as
detection is concerned, the SELECT part of OPPL could be used to some extent;
our naming constraints are however out of the scope of OPPL. Furthermore, in
contrast to OPPL, we decompose the process of transformation into parts, which
enables user intervention within the whole workflow.

3 PatOMat in Use: Matching vs. CP Importing Scenario

As mentioned in the Introduction, the initially considered scenario for pattern-
based ontology transformation was the ontology matching scenario, schemati-
cally depicted in Fig. 1 (the ‘structural changes’ shown are merely illustrative
and don’t claim to correspond to meaningful transformations). The transforma-
tion step here precedes the actual matching step in the whole workflow. A given
ontology (possibly just a fragment thereof), which is to be matched to a second
ontology, is first matched to the source OP of a TP; the choice of the fragment as
well as of the TP is however guided by an analysis of the second ontology (such
that the target OP of the TP should use the same modelling style as the second
ontology). The transformed ontology is built in the style of the target OP of the
TP. This makes the subsequent matching to the second ontology easier; e.g. sim-
ple and fast string matching methods can be used instead of sophisticated and
fragile matching methods.

The content pattern import scenario (adapting a prototype ontology, via
transformation, to the style of a CP), depicted in Fig. 2, differs from the previous
one in the overall workflow, in the sense that the import literally precedes the
transformation. Namely, in the first step, the CP is included in the ontology as a
separate structure, merely subordinated to owl:Thing. Then the transformation
takes place; however, only TPs specifically tailored to the given CP are consid-
ered. In the transformed ontology,6 shaped to the style of the target OP of the
TP, the CP is already integrated into the ontology, as part of its root structure.
5 http://owlapi.sourceforge.net/
6 For illustration, Fig. 2 also contains an entity B, which is not matched by the TP

and thus implicitly copied to the transformed ontology.

Fig. 1. Schematic depiction of transformation for ontology matching

Fig. 2. Schematic depiction of transformation for CP import

Even if a part of the input to the transformation, the content pattern, is
fixed, there is potentially great variability in the ways different ontologies can
be adapted to the pattern. The variability goes along (at least) three different
dimensions: the style of the source pattern occurrence proper, the style of the
target pattern (apart from the imported content pattern itself), and the existence
of additional axioms external to the source pattern that refer to entities from
the pattern. We exemplify each of these dimensions in Section 5.

4 Input Settings for the Import Scenario Case Study

4.1 Role Modelling Approaches and AgentRole Pattern

The notion of role7 has repeatedly appeared in the history of knowledge mod-
elling. We will not examine this phenomenon in depth here (for thorough dis-
cussion refer e.g. to [3], Ch.7), but will only present the most obvious modelling
options in the context of OWL, partially borrowed from [10].

For expressing general notions in OWL, essentially, one has two atomic entity
types available. An ontology designer not deeply acquainted with the notion of
ontological role will typically model a role implicitly, as

– a class that is a subclass of a class expressing a natural concept (e.g. Teacher
as subclass of Person), such that the ‘role’ class is endowed with restrictions
over one or more properties (e.g. an instance of Teacher has to be teacherOf
some Student and teacherAt some University), or

– just as one or multiple separate properties (such as teacherOf, teacherAt)
representing aspects of the role.

It should be mentioned that Sunagawa [10] also suggests a sophisticated OWL
pattern for capturing all important aspects of role playing: role concepts (i.e. roles
proper), natural concepts (that play roles), and role holders (that hold roles but
inherit properties from natural concepts). We do not however consider this pat-
tern here, as it is very unlikely for it to have been engineered ‘just by chance’ in
the kind of prototype ontologies we focus on in our approach.

The wiki-based web portal at OntologyDesignPatterns.org contains a vast
number of patterns of various types, all related to ontology design and ex-
ploitation. The most represented category is that of content patterns as im-
mediately reusable ontology building blocks: there are 80 such patterns (though
none yet certified) at the time of writing this paper. As the library aims to lower
the threshold for even less experienced ontology designers, most CPs are rela-
tively simple, yet grounded in well-designed foundational ontologies such as the
lightweight version of DOLCE.8 The AgentRole pattern, depicted in UML-like
notation in Fig. 3, is an example of such a simple content pattern leveraging

7 This general notion should not be confused with the term ‘role’ used for binary
relation in description logics (as formal underpinning of OWL).

8 http://www.loa-cnr.it/ontologies/DUL.owl

on the modular structure of imports. The AgentRole pattern, displayed with
its elements in solid, specializes the ObjectRole pattern (entities from the ‘or’
namespace), which in turn specializes the Classification pattern (entities from
the ‘class’ namespace), both displayed with their elements in dashed. Following
from the most generic model, the Classification pattern merely allows to state
the relationship between an entity and the concept to which this entity is some-
how classified; this corresponds to an informal ‘reification’ of the subClassOf
relationship. ObjectRole, in turn, already deals with role playing, understood as
a specific type of classification;9 entities playing roles can be any objects (i.e. no
arbitrary things such as properties any more). Finally, AgentRole introduces
an even more specific class of such role-playing objects, called Agent, which is
declared as disjoint with class Role.

Fig. 3. AgentRole pattern and its imports

4.2 Example Input Ontology

As core example of input ontology to be adapted, we will use an existing ontology
from the OntoFarm10 collection, the ConfOf ontology. It models the domain of
‘organizing conferences’ from the point of view of a particular review (and other
activity) support software: the ConfTool.11 We will however also discuss patterns
alternative to those used in ConfOf.

One ‘role-playing’ fragment in ConfOf is depicted in Fig. 4. The notion of
authorship is modelled as the Author class being subclass of Person. The Author
class has a pair of existential and universal restriction over the writes property,
and also appears in the domain of this property and in the range of its inverse,
writtenBy.

9 There is a subproperty relationship (not depicted in the diagram) between isRoleOf
and Classifies, and hasRole and isClassifiedBy, respectively.

10 For an overview on the OntoFarm project see http://nb.vse.cz/~svatek/

ontofarm.html.
11 http://www.conftool.net

Fig. 4. Fragment of ConfOf ontology dealing with authorship

5 Transformation Process Alternatives

In this section we will demonstrate the aspects of the ‘CP import’ scenario of
pattern-based ontology transformation, outlined in Section 3, on the concrete
setting presented in Section 4.

5.1 Source Pattern

As natural candidates for the source pattern we can consider the simple role pat-
terns from Section 4.1: we can call them ‘class-oriented’ and ‘property-oriented’
pattern, respectively. Obviously, ConfOf sticks to the ‘class-oriented’ role pat-
tern. Another ontology could however, for example, avoid the Author class and
model the author role merely in terms of properties such as writes and written
by (or e.g. authorOf and hasAuthor), with domain/range set to Person, this
leading to the ‘property-oriented’ pattern.

In addition, due to the above-mentioned sequencing of operations, the content
pattern is already present in the ontology when the ontology is submitted to
transformation, and thus has to be a part of the source pattern. However, it is
unconnected to the rest of the ontology (and source pattern) yet.

5.2 Target Pattern

Obviously, the content pattern is transferred to the target pattern without
change. However, the way the rest of the source pattern occurrence is shaped
and linked to the content pattern may vary.

Note that, in the particular context of AgentRole pattern and the class-
oriented role modelling style of ConfOf, the transformation of the notion of
‘author’ from a (seemingly) natural concept to a role amounts to transition from
the ‘instance of’ relationship (being a language primitive in OWL DL) to the
hasRole relationship (i.e. object property). By consequence, the fact of a person
having the author role, which was previously expressed as e.g. “John rdf:type
Author”, now has to connect the individual John to some ‘author role’ entity
through the hasRole property. Assuming we formalise the author role as class in

the target pattern, we arrive to an instance of the “defining classes as property
values” problem, treated as a logical pattern in [7].

From the set of five ‘modelling approaches’ (actual logical patterns, in fact) of
this published pattern we will only consider those expressible in OWL DL. This
eliminates “Approach 1: Use classes directly as property values”. The remaining
are, in turn (in the original terminology of [7]):

– Approach 2: Create special instances of the class to be used as property
values

– Approach 3: Create a parallel hierarchy of instances as property values
– Approach 4: Create a special restriction in lieu of using a specific value
– Approach 5: Use classes directly as annotation property values

We will not analyze the pros and cons of different approaches wrt. particular
situations, as in [7]. Instead we will try to reveal important aspects of transfor-
mation of the ConfOf fragment to the given approach. It should be noted that
the application of the approaches is not always as obvious as in the “books-about-
animals” example used through [7], as the nature of the underlying dc:subject
property is somewhat different from the hasRole property in our example; we
occasionally comment on such differences.

Transformation to Approach 2. It may lead, assuming some naming transfor-
mations, to the situation depicted in Fig. 5 (we omit the namespace prefixes
and don’t distinguish imports, for better readability). The Author class was re-
moved, while there is a new class, with the same name but different meaning,
subordinated to Role; there is now also now a distinguished instance of the latter
class, called AuthorRole12 (in rounded rectangle) as part of the ontology. While
populating the transformed ontology, an instance of Person can be connected
by the hasRole property with the AuthorRole individual.

ConfOf models authorship in a simple way such that there are no subclasses
of Author. However, if there were such subclasses (e.g. PosterAuthor), they would
be transformed to subclasses of the new Author class; each such class would also
have a corresponding individual (e.g. PosterAuthorRole) as direct instance.

Transformation to Approach 3. The transformation corresponds to the setting
in Fig. 6. The difference from Approach 2 is that Author has no longer the
semantics of role and thus is not subclass of Role. As AuthorRole is still instance
of Role, we link it to Author using the annotation property rdfs:seeAlso.

The most important distinction is however not visible in this simple diagram.
Namely, if there were a subclass system under Author in the original ontology,
it would have to be transferred to the instance level. Instead of subclasses, there

12 In the “books-about-animals” example in [7], the class is assumed to correspond to
an animal species and the instance to the ‘topic’ of this animal. Both in the original
example and in the example used in this paper, the nature of such instances—‘roles’
and ‘topics’, respectively—is thus not very coherent with the semantics of the class
(whose name, be it e.g. Lion, or Author, is rather appropriate for a natural concept).

Fig. 5. Target of transformation using Approach 2

Fig. 6. Target of transformation using Approach 3

would be individuals such as PosterAuthorRole, which would be all direct in-
stances of Role, and their specialization relationship would be modelled by a
dedicated object property such as subRoleOf.

Transformation to Approach 4. This is similar to Approach 2 (including the
treatment of a hypothetical subclass system), except that

– the original Author class is not removed
– consequently, the new class (subclass of Role) is not named Author but

AuthorRole
– no special instances are generated for the new (AuthorRole) class
– instead, an additional restriction (in bold) is imposed on the Author class,

relating it to the AuthorRole class.

The result is in Fig. 7.

Fig. 7. Target of transformation using Approach 4

Transformation to Approach 5. The transformation corresponds to the setting
in Fig. 8. In this approach, similarly to Approach 3, Author is not subclass of
Role, and represents, together with its hypothetical subclasses, a branch of the
ontology separate from Person, too. The Role class and the original hasRole and
isRoleOf object properties, although imported with the AgentRole pattern, are
not used at all. Instead, a new pair of annotation properties, borrowing the name
of these two object properties, is defined. They can be used to directly connect
instances of Person to class Author (or its subclass), as using classes as values
of annotation properties is possible within OWL DL. Obviously, the downside is
unavailability of information in annotations to conventional DL reasoners.

Fig. 8. Target of transformation using Approach 5

Feedback to the W3C Pattern. The context of transformation probably makes
obvious that the five approaches from [7] (including Approach 1, which amounts
to using a class directly as value of the property, thus lifting the ontology to
the OWL Full dialect) are not the only possible choices for expressing the given
conceptualization. Systematic variation of the (declaratively expressed) trans-
formation pattern can give rise to multiple new approaches, which deserve to be
further systematized, in a new round of the best practice identification process.

5.3 Additional Axioms

The implemented version of the transformation framework does not make dis-
tinction between the source pattern proper (i.e. structures whose occurrence is
essential for the presence of the pattern) and additional, ‘external’ axioms that
only ‘touch’ the pattern by referring to one of its entities. Such axioms may or
may not be present for an ontology fragment to match the source pattern, but if
they are present then they have to be considered by the transformation. Consid-
ering them as mandatory makes the whole transformation pattern over-specific
and hard to understand. Therefore, for the new (not yet implemented) version
of the transformation framework, we will decompose the transformation pat-
terns into a mandatory part (containing the source and target ontology patterns
proper, and their pattern transformation) and an optional part (containing the
additional axioms, and their pattern transformation).

Specifically, when looking at Fig. 4, we see that the original Author class
is used both in local (existential and universal) and global (domain and range)
restrictions. If we use e.g. Approach 2, the Author class is however removed.
The easiest but most lossy way of dealing with axioms that referred to it would
be to drop the local restrictions together with the class, and to let the global
restrictions refer to the immediate superclass (i.e., Person). However, we can also
(at the cost of complexity overhead) replace the removed named class with the
composed class expression Person u ∃ hasRole.Author in these axioms. While
this is straightforward for the global restrictions (just setting the domain/range
of the respective properties to be this class expression), for modelling the local

restrictions in OWL 2 DL we would have to employ an explicit anonymous class
in order to link the two composed concept expressions, e.g.:

1 ≡ Person u ∃ hasRole.Author
1 v ∃ writes.Contribution

Detailed discussion of the impact of such manipulations is however beyond the
scope of this paper.

6 XML Serialisation of Transformation Patterns

Fig. 9 shows the XML serialisation of the transformation pattern for Approach 2.
The codes for all four mentioned approaches are available in the transformation
pattern library accessible from http://nb.vse.cz/~svabo/patomat/tp/.

As mentioned in Section 2, the transformation pattern consists of two ontol-
ogy patterns, the source and the target one, plus a pattern transformation. Both
OPs contain the given CP (AgentRole), with concrete classes, in their ‘axioms’
part (last six axioms in each OP).

In addition, the source OP declares two placeholders for classes, ?A and
?B, such that the second is subclass of the first (such as Author is of Person):
this is the only axiom with placeholders. There is no naming detection pattern,
for simplicity (as none is needed in this simple example). Additional axioms,
mentioned in Section 5.3, are not yet considered either.

The target pattern declares two placeholders for classes, ?C and ?D, and
one for individual, ?b, which is instance of the latter class. The first two of its
axioms however already interlink the imported CP with placeholder classes (this
corresponds to subordinating Person to Agent and Author to Role). The third
axiom states that ?b is instance of ?D (such as AuthorRole to Author).

The pattern transformation, finally, declares the logical equivalence13 trans-
formation links between the classes from the source and target OP, and a simple
naming pattern transformation for creating the name of the new individual by
concatenating the name of class ?B with the string ‘Role’.

7 Related Work

We are unaware of any style transformation approach used in connection with
content patterns as in our current research. As regards our framework as such,
several generic approaches to ontology transformation have recently been pub-
lished. We refer here to two that look most relevant to our work (aside pure
OPPL, which we ourselves use as an external component of our framework).

In [9] the authors consider ontology translation from the Model Driven En-
gineering perspective. The basic shape of our transformation pattern is very
13 For simplicity we use an equivalence link even for ?B vs. ?D, although the equivalence

between the class Person before and after transformation is arguable; removing a
class and creating a new one would be sounder.

<tp>

<op1>

<entity_declarations>

<placeholder type="Class">?A</placeholder>

<placeholder type="Class">?B</placeholder>

</entity_declarations>

<axioms>

<axiom>?B subClassOf ?A</axiom>

<axiom>or:isRoleOf range or:Object</axiom>

<axiom>or:hasRole domain or:Object</axiom>

<axiom>or:hasRole range or:Role</axiom>

<axiom>or:isRoleOf domain or:Role</axiom>

<axiom>:Agent subClassOf or:Object</axiom>

<axiom>:Agent disjointWith or:Role</axiom>

</axioms>

</op1>

<op2>

<entity_declarations>

<placeholder type="Class">?C</placeholder>

<placeholder type="Class">?D</placeholder>

<placeholder type="Individual">?b</placeholder>

</entity_declarations>

<axioms>

<axiom>?C subClassOf :Agent</axiom>

<axiom>?D subClassOf :Role</axiom>

<axiom>?b a ?D</axiom>

<axiom>or:isRoleOf range or:Object</axiom>

<axiom>or:hasRole domain or:Object</axiom>

<axiom>or:hasRole range or:Role</axiom>

<axiom>or:isRoleOf domain or:Role</axiom>

<axiom>:Agent subClassOf or:Object</axiom>

<axiom>:Agent disjointWith or:Role</axiom>

</axioms>

</op2>

<pt>

<eq op1="?A" op2="?C"/>

<eq op1="?B" op2="?D" />

<ntp entity="?b">?B+Role</ntp>

</pt>

</tp>

Fig. 9. Simple transformation pattern for Approach 2

similar to their metamodel. They consider an input pattern, i.e. a query, an out-
put pattern for creating the output, as well as variables binding the elements.
However, the transformation is considered at the data level rather than at the
schema level as (primarily) in our approach.

In comparison with the previous work the authors of [5] leverage the ontol-
ogy translation problem to the generic meta-model. This work has been done
from the model management perspective, which implies a generality of this ap-
proach. There are important differences to our approach. Although they consider
transformations of ontologies (expressed in OWL DL), these transformations
are directed into the generic meta-model or into any other meta-model such as
that of UML or XML Schema. In contrast, in our approach we stay within one
meta-model, the OWL language, and we consider transformation as a way of
translating a certain representation into its modelling alternatives.

8 Conclusions and Future Work

We demonstrated that transformation patterns are a useful mediator for ad-
equately importing content patterns into ontologies, especially into prototype
ones that have been designed ad hoc, are not yet widely used, and now are to
be put (through the content patterns) onto a more solid and shared foundation.
Although the scenario used in this paper is quite narrow, we believe that it
uncovers recurrent issues related to ontology style heterogeneity in general.

Aside the AgentRole pattern and its generalizations, we plan to explore other
content patterns from OntologyDesignPatterns.org. Analogously, we will experi-
ment with different input ontologies, which will require new transformation op-
erations such as changing between properties and classes (‘de/objectification’),
as e.g. in the ‘n-ary relations’ logical pattern [8]. Obviously, the cost/benefit ratio
of the CP import functionality should also eventually be examined with respect
to the size of the ontology to be transformed and amount of data that already
refer to it (and have to be transformed too, either at query time or in bulk).

The most critical future work, which is not specific for content pattern import
but generic for pattern-based transformation, is however support for recursive
and optional parts of patterns. This will lead to much more efficient transfor-
mation, as the transformation process, triggered at a ‘root’ entity (such as the
Author class in ConfOf) could be propagated down the subclass (for different
specific types of authors) or subproperty links, and yield an analogous, though
stylewise different structure in the target ontology.

Another generic functionality we also plan to achieve in long term is system-
atic, pattern-based swapping of the information lost during style transformation
into OWL 2 annotations, see e.g. [1] for initial considerations.

From the research point of view, a challenging task is to automatically suggest
fragments of ontologies that should be (transformed and) subordinated to a
content pattern. For the AgentRole pattern, for example, this challenge amounts
to recognising classes or properties that implicitly express a role. In [12] we
already formulated and in [13] made an initial evaluation (with promising result)

of a heuristic for detection of a ‘role’ class, through the occurrence of its name
in (a naming pattern context of) a property having this class as domain. Much
more complex heuristics, possibly inductively learnt, would however be needed
for efficient recommendation.

This research has been partially supported by the CSF grant no. P202/10/1825,
“PatOMat – Automation of Ontology Pattern Detection and Exploitation”.
The authors are indebted to Eva Blomqvist, Aldo Gangemi and Valentina Pre-
sutti for inspiring discussions and hints regarding the ODP.org content patterns.

References

1. Annotation System. OWL WG, Work-in-Progress document, http://www.w3.org/
2007/OWL/wiki/Annotation_System.

2. Egaña M., Stevens R., Antezana E.: Transforming the Axiomisation of Ontologies:
The Ontology Pre-Processor Language. In: OWLED. 2008. (z related work:)

3. Guizzardi G.: Ontological Foundations for Structural Conceptual Models, PhD The-
sis, University of Twente, The Netherlands. Published as the book Ontological
Foundations for Structural Conceptual Models, Telematica Instituut Fundamen-
tal Research Series No. 15, ISBN 90-75176-81-3 ISSN 1388-1795; No. 015; CTIT
PhD-thesis, ISSN 1381-3617; No. 05-74.

4. Presutti V., Gangemi A.: Content ontology design patterns as practical building
blocks for web ontologies.: In Proceedings of ER2008. Barcelona, Spain, 2008.

5. Kensche D., Quix C., Chatti M., Jarke M.: GeRoMe: A Generic Role Based Meta-
model for Model Management. In: Journal on Data Semantics, Vol.8, p.82–117,
2007.

6. Motik B., Patel-Schneider P.F., Parsia B. (eds.): OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax. W3C Recommendation 27 Oc-
tober 2009, online at http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/.

7. Noy N. (ed.): Representing Classes As Property Values on the Semantic Web.
W3C Working Group Note 5 April 2005, online at http://www.w3.org/TR/

swbp-classes-as-values/.
8. Noy N., Rector A. (eds.): Defining N-ary Relations on the Semantic Web.

W3C Working Group Note 12 April 2006, online at http://www.w3.org/TR/

swbp-n-aryRelations/.
9. Parreiras F. S., Staab S., Schenk S., Winter A.: Model Driven Specification of Ontol-

ogy Translations. In: 27th International Conference on Conceptual Modeling (ER-
2008). n. 5231, p. 484–497. 2008.

10. Sunagawa E., Kozaki K., Kitamura Y., Mizoguchi R.: Role organization model in
Hozo. In: Proc. EKAW’06, Podebrady, Czech Republic. Springer, LNCS.

11. Šváb-Zamazal O., Svátek V., Iannone L.: Pattern-Based Ontology Transformation
Service Exploiting OPPL and OWL-API. In: EKAW-2010, Lisbon, Portugal, 2010.

12. Svátek V., Šváb-Zamazal O., Presutti V.: Ontology Naming Pattern Sauce for (Hu-
man and Computer) Gourmets. In: Workshop on Ontology Patterns at ISWC’09,
Washington DC, 2009. Online http://sunsite.informatik.rwth-aachen.de/

Publications/CEUR-WS/Vol-516/

13. Svátek V., Šváb-Zamazal O.: Entity Naming in Semantic Web Ontologies: Design
Patterns and Empirical Observations. In: Znalosti 2010, 9thCzecho-Slovak Annual
Knowledge Technology Conference, Jindřich̊uv Hradec 2010, Czech Republic.

