SPARQL-DL Queries for Antipattern Detection

Catherine Roussey!, Oscar Corcho?, Ondiej Svab-Zamazal®, Francois
Scharffe*, and Stephan Bernard!

! Irstea, 24 Av. des Landais, BP 50085, 63172 Aubiére, France
catherine.rousseyQirstea.fr
2 Ontology Engineering Group, Departamento de Inteligencia Artificial, Universidad
Politécnica de Madrid, Spain

ocorcho@fi.upm.es

3 Knowledge Engineering Group, University of Economics Prague, Czech Republic

ondrej.zamazal@vse.cz
4 LIRMM, Université de Montpellier, France

scharffe@lirmm.fr

Abstract. Ontology antipatterns are structures that reflect ontology
modelling problems, they lead to inconsistencies, bad reasoning perfor-
mance or bad formalisation of domain knowledge. Antipatterns normally
appear in ontologies developed by those who are not experts in ontol-
ogy engineering. Based on our experience in ontology design, we have
created a catalogue of such antipatterns in the past, and in this paper
we describe how we can use SPARQL-DL to detect them. We conduct
some experiments to detect them in a large OWL ontology corpus ob-
tained from the Watson ontology search portal. Our results show that
each antipattern needs a specialised detection method.

Keywords: OWL, ontology, antipattern, SPARQL, SPARQL-DL

1 Introduction

In knowledge engineering, the concept of knowledge modelling pattern or on-
tology design pattern is used to refer to modelling solutions that allow solving
recurrent knowledge modelling or ontology design problems, as defined in [14].
Antipatterns are defined as patterns that appear obvious but are ineffective or
far from optimal in practice, representing worst practices about how to struc-
ture and design an ontology. However, in contrast to ontology design patterns,
which are rooted deeply in the most recent ontology engineering methodologies,
the work on antipatterns is less detailed. Antipatterns may have several appli-
cations: Antipatterns can be used to train and guide new ontology developers.
Ontology editors can incorporate antipattern detection tool in order to detect
potential errors during ontology development. Most of ontology systems that
deal with a large set of ontologies, like ontology retrieval systems, need ontol-
ogy quality measures. The quality of ontology can be evaluated by computing
the number of antipattern occurrences. As far as we know antipattern studies
are mainly applied to ontology debugging tasks. One of the earliest works in

this direction was set by the OntoClean method [10], which defined a set of
meta-properties applied to classes and a set of procedures to check and correct
the subsumption relations between classes. Other sources for antipatterns are:
[19], which proposes four terminological patterns applied on class names to de-
tect possible errors in subsumption relations between classes. The Laboratory of
Applied Ontology has identified four logical antipatterns called MixedDomains,
all of them focused on property domains and ranges. And [15] describes com-
mon difficulties for newcomers to Description Logics (DL) in understanding the
logical meaning of expressions.

Several tools can be used for antipattern detection, most of which are avail-
able inside ontology editors and require the use of a reasoner to provide their
justifications. Pellint[8] focuses on the detection and repair of antipatterns to
improve ontology reasoning performance. The Protégé Explanation Workbench
[11] and SWOOP [13] provide justifications of inconsistencies in ontologies based
on the outputs of DL reasoners. However, using a reasoner for this purpose is
not always possible, since in some complex ontologies, where the number of er-
rors is too high, reasoners fail to provide any results. Besides, the catalogue of
antipatterns or errors that they can detect is fixed.

Our antipattern detection methods follow a more general approach. They
can work with an extensible set of antipatterns and some of them can be applied
without the use of a reasoner. In general, our approach is based on the use
of a set of SPARQL-DL queries for each antipattern to be detected. Then, each
SPARQL-DL query is translated into SPARQL one. In our process, we can decide
whether inferences are enabled or not before running any SPARQL queries, and
we also offer the possibility of transforming the original ontologies into a form
where SPARQL queries should retrieve more results.

We first tested our methods on the detection of one complex antipattern
using only a set of SPARQL queries [16]. This first experiment was applied
on 5 ontologies. This paper presents a larger experiments using a more generic
approach: More antipatterns are detected on a larger set of ontologies. We also
try to simplify the creation of queries using SPARQL-DL language. One of our
final goal is to understand how often antipatterns appear in existing publicly
available ontologies.

This paper is structured as follows. Section 2 briefly describes the antipat-
terns that will be used to run our experiments. Section 3 will describe the meth-
ods we have followed in order to run the experiments. Section 4 describes the
experiment setup and the results of the experimentation. Finally, Section 5 pro-
vides some conclusions to the work done, based on the experiment results, and
outlines the next steps to be done in our work.

2 A catalogue of antipatterns

A set of patterns commonly used by domain experts in their implementation
of OWL ontologies are identified in [9]. These patterns resulted in unsatisfiable
classes or modelling errors, due to misuse or misunderstanding of DL expressions.

In this section we will describe 4 antipatterns which are the ones that, as our
experience has shown, are easier to understand and debug by domain experts.
These patterns are categorized into two groups by [9]:

— Detectable Logical AntiPatterns (DLAP): this type of patterns generates un-
satisfiable classes that are normally identified by existing ontology debugging
tools, although the information provided back to the user is not described
according to such a pattern. This makes it sometimes difficult for ontology
developers to find a good solution [11], [13].

— Cognitive Logical AntiPatterns (CLAP): they represent possible modelling
errors that may be due to a misunderstanding of the logical consequences
of the used expression. This type of patterns is not detected by debugging
tools, although in some cases their combination may lead into unsatisfiable
classes that are detected.

Now we briefly® describe them from the simplest to the most complicated
one. Each description contains:

— name, acronym and category that they belong to (i.e. DLAP or CLAP),
— several formal descriptions using the german syntax of DL ©,
— brief explanation of why this antipattern can appear.

SynonymOrEquivalence (SOE) antipattern — CLAP category
C1 = Cy; (1)

The ontology developer wants to express that two classes C7; and Cs are
identical, something which is not particulary useful especially if the ontology
does not import others. Indeed, what the ontology developer generally wants to
represent is a terminological synonymy relation, i.e. a class has two labels: the
labels associated (or used as) the name of the classes C; and Cs. Usually one of
these classes is not used anywhere else in the axioms defined in the ontology.

EquivalencelsDifference (EID) antipattern — DLAP category
Cl = CQ; Disj(Cl, CQ); (2)
01 E 02; DiSj(Cl, Cg); (3)

where the notation Disj(Cy,Cs) is as a shorthand for C; M Cy T L.

From our experience in ontology debugging, we notice that this antipattern
comes from a misunderstanding of the subClassOf relation. When the ontology
developer has explicitly expressed that C; and Cs are equivalent and disjoint,
(s)he wants to say that Cy; and Cy share some common properties and Cy has
more properties than Co (or vice versa). After a short training session the de-
veloper would discover that (s)he really wants to express that C; is a subclass
of Cy (Cy1 E Cs). Another possibility is that the ontology developer explicitly
expressed that Cs is a parent class of C. But, these two classes are determined
as disjoint from each other by a reasoner.

® Additional information, such as examples and SPARQL queries, are available at [7].
6 antipatterns are abstract structures that can have several DL forms.

AndIsOr (AIO) antipattern — DLAP category

C3 C Cy N Co; Disj(Cy,Co); (4)
C3 = C1 N Cy; Disj(Cy, Cy); (5)
C3 £ 3R.(C1 N Cy); Disj(Cy,Ca); (6)
C3 =3R.(C1 NCy); Disj(Cy,Co); (7)

This antipattern appears due to the fact that in common linguistic usage,
”and” and ”or” do not correspond consistently to logical conjunction and dis-
junction respectively [15]. An example is presented in [7].

OnlynessIsLoneliness (OIL) antipattern — DLAP category

03 E VR.Cl; 03 E VR.CQ; DiSj(Cl, 02); (8)
Cg EVR.C1;C3 EVR.CQ; D’isj(c1,02); (9)
C3 =VR.Cy;C5 =VR.Cy; Disj(Cq,Co); (10)

C1 and Cs are defined as disjoint. The ontology developer created an universal
restriction to say that instances of C3 can only be linked with property R” to
instances of C'1. Next, a new universal restriction is added saying that instances
of C3 can only be linked with R to instances of C5. During a long development
process, the ontology developer forgot the previous axiom that can be inherited
from any of the parent classes.

3 SPARQL-based Detection of Ontology Antipatterns

In this section we describe the different methods that we have elaborated in order
to detect antipatterns in OWL ontologies by means of SPARQL and SPARQL-
DL queries, based on the usage of the PatOMat ontology pattern detection tool
[3]. This tools is part of the PatOMat suite of tools, which is focused on the
detection of patterns in ontologies and their transformation. This detection tool
is based on Jena 2.6.2[1] and Pellet 2.0.1[5], and enables the processing of a
set of SPARQL queries over a set of ontologies, producing a report in terms of
numbers of patterns detected and details for each ontology. It processes either
only asserted axioms or both inferred and asserted axioms of given ontology.
Using this tool we are querying an OWL ontology by means of a query
language (SPARQL) that is agnostic about the underlying knowledge represen-
tation model of OWL, i.e. we are actually querying the RDF serialization of
an OWL ontology. There are also other available options in the current state
of the art for OWL ontology pattern detection and transformation. First, there
is OPPL language and its associated tools described by [12]. This language
enables axiom-based manipulation with an OWL ontology. Second, there is a

" To be detectable, property R must have at least a value, normally specified as a
(minimum) cardinality restriction for that class, or with existential restrictions.

language alternative for an OWL ontology querying Terp [4] which is based on
the OWL Manchester syntax. While SPARQL is the language dedicated to query
RDF triples, OPPL and Terp are dedicated to query the RDF serialization of
OWL expressions because they contain OWL constructs like subClassOf, Com-
plementOf, DisjointWith. Nevertheless, in order to make queries easier (using
some shortcuts for DL expressions in RDF syntax, e.g. omitting RDF collection
vocabulary) we used SPARQL-DL abstract syntax defined in [17]. This enables
us to express queries in more compact way. To plug in such queries into our
approach we developed a query translator that transforms an input query in
SPARQL-DL abstract syntax into a SPARQL query. SPARQL-DL queries and
SPARQL queries are available on our antipattern web-page [7].

Transforming antipatterns into SPARQL-DL queries is not a trivial task. For
each antipattern, several SPARQL-DL queries are needed to detect antipattern
occurrences in OWL class definition. The difficulties come from several points:

— An antipattern can be associated to several logical formulae in DL syntax.
For example, we presented 3 formulae for OIL antipatterns.

— Some logical formulae are composed of several atomic axioms. We defined
an atomic axiom as a condition (necessary T or sufficient =) associated
to a named class C' using at most one constructor (V, 3, = or M) and its
associated operands: one class and one property for V, 3 and two classes for
M . All these classes should be named classes. An example of atomic axiom
can be C C JR.X. For example, the 3 formulae of the OIL antipattern
contain 3 atomic axioms.

— Ontology developers can have very different implementation styles when de-
signing an OWL ontology. For example, some developers prefer to write long
class definitions. In that case, a class is defined by a conjunction of un-
amed classes: C C (3R.X) M (VR.Y)M.... Others can prefer to write short
definitions. A class is defined by a set of atomic axioms: C' C FR.X;C C
VR.Y;C C Thus, in the case of an antipattern formula, an atomic axiom
can be located at different places in the class definition.

— An atomic axiom can belong to the class definition or can be inherited from
a parent class definition.

— An atomic axiom can be stated by the ontology developer or inferred by a
reasoner.

To build our queries, we first imagine different versions of each antipattern
formulae using the SPARQL-DL abstract syntax. We try to imagine where an
atomic axiom can be stated by the ontology developer in a class definition. We
limit our imagination to class definitions that have at most four conjunctions.
We also try to imagine the different manner to express a disjoint axiom. We take
in account the fact that:

— disjoint axioms are symetric Disj(C1,Cs) F Disj(Ca, Ch),
— disjoint axiom can be inferred from a logical negation C; C —Cs E Disj(Cq, Ca).

Then we automatically translate each SPARQL-DL queries into SPARQL
ones. Notice that a SPARQL-DL query is just a simplification of a SPARQL

query, which represent an exact translation of the previous one. We also auto-
matically generate SPARQL queries which merges all the different versions.

Now we will describe four methods that we have followed in order to detect
antipatterns in the ontology corpus. Overall workflow of our approach is depicted
in Figure 1.

 —
SPARQL-DL SPARQL PatOMat
queries translator queries detection Antipattern
Ve & Tool occurrences

materialised

©and
transformed

ontologies

reasoner

Transformation
process

transformed
ontologies

materialised |
ontologies

reasoner

OowL
ontologies

Fig. 1. The antipattern detection methods

Method 1: Use of SPARQL Queries over Asserted OWL Ontology Axzioms In
this approach, we take into account that SPARQL query engines per se do not
consider inferences that can be done with OWL ontologies. However, our as-
sumption is that there will be cases where ontologies cannot be processed by a
reasoner or the reasoner results cannot be obtained in a reasonable time. This
normally happens with large ontologies or with ontologies with a large number
of errors. For example when several transitive properties are used in numerous
class definitions, the reasoner reaches an out of memory alarm.

Method 2: Use of SPARQL Queries over Inferred and Asserted Ontology Axioms
If it is possible to use a reasoner, we materialise all the inferences that can be
done by an OWL reasoner on the ontologies and then run SPARQL queries over
the resulting ontologies, called materialised ontologies.

Method 3 and 4: Use of SPARQL Queries over Transformed OWL Ontologies
Due to the complexity of creating a large number of SPARQL-DL queries for an
antipattern and to the fact that different ontology developers may have different

implementation styles, we propose to follow a two steps process where we apply
transformations before executing the queries. Transformations have two goals:
to harmonise the implementation style of the ontology and to simulate some of
the axioms inferred by a reasoner. This last goal is useful only for ontologies that
can not be processed by a reasoner.

The current transformations that we apply are:

— If the ontology contains C7; = Cy where C; and Cs are named classes, we
add two new axioms C7 C C5 and Cy C Cf.

— If a named class is defined by conjunction of named or unnamed classes,
we split it into several simpler axioms. E.g., considering the following class
definition: C' E X MY, in that case we add two axioms C C X and CC Y.

— If a parent class contains an axiom, we add it also in its direct child class.
E.g., considering the following definition of the class: C; C dR.X. If Cy 4 is
a direct child of Cy, C11 C C4, we add the axiom C7; C JR.X. In this case,
the transformation is not repeated over the class hierarchy.

In this paper, we have explored the behaviour of the SPARQL query de-
tection method both after transformation on the asserted ontology and on the
materialised ontology.

4 Experimentation: Finding Antipatterns in Real-world
Ontologies

In this section, we describe the results of our experiments with a corpus of
ontologies downloaded directly from the Web and by the Watson semantic search
engine. We will first describe how we have built the ontology corpus, and then
we present the results of applying the different methods from Section 3 over this
ontology corpus.

4.1 Building a Corpus of (Debuggable) OWL Ontologies

We have used the Watson API [6] to retrieve publicly available ontologies and
we have always accessed these ontologies using the Watson cache, since there
are sometimes mismatches between the stored URIs of those ontologies and the
actual files that can be obtained. We searched ontologies satisfying the following
two constraints: they should be represented in OWL and they should have at
least five classes. We collected 2927 unique ontologies. Next, we checked the
consistency of all these ontologies using the Pellet reasoner, and 71 of them were
classified as inconsistent.® From inconsistent ontologies, we removed the whole
ABox so that it is possible to use a reasoner as proposed in our second method
(none of our antipatterns considers the ABox, and hence the removal of the ABox

8 We use the definition of inconsistency proposed by [18]. An ontology is inconsistent,
if there is no interpretation that is a model for it. An ontology is incoherent if it
contains at least one unsatisfiable class.

does not have any impact on the results obtained). This was done by OWL-API
[2], which resulted in five less ontologies, since they were not parsable by this
API. Consequently, the corpus is composed of 66 incoherent ontologies, that is,
66 ontologies that contain at least one unsatisfiable class.

1

From these ontologies we built three sets of ontologies :

. Antipattern ontologies: 5 ontologies in this set have already been used for the
creation and update of the antipattern catalogue presented in [9]. It contains
the HydrOntology (which has 159 classes whose 114 are unsatisfiables), the
Forestal Ontology (which has 93 classes whose 62 are unsatisfiable), the
Tambis ontology (which has 395 classes whose 112 are unsatisfiable), the
Sweet Numeric ontology (which has 2364 classes whose 2 are unsatisfiable)
and the University ontology of the MIND Lab (which has 29 classes whose
7 are unsatisfiable). Notice that in our experiment Hydrontology and the
Tambis ontologies cannot be processed by Pellet in a reasonable time.
W38C/DL ontologies: we noticed that 31 ontologies were build by DL ex-
perts in order to test reasoner performance and results. These ontologies are
characterized by having less than 18 classes (whose at most 4 classes are
unsatisfiables ones). The axioms contained are very complex: inverse prop-
erties, functional properties, lots of conjunctions or disjunctions etc. But all
these ontologies can be processed by Pellet.

Web ontologies: this set contains heterogeneous ontologies from various do-
mains. There are huge ontologies which contain more than 1000 classes and
Pellet cannot process them in a reasonable time, e.g. an old version of the
Open CyC ontology, the Computer Science for Non-Computer Scientists on-
tology. There are also medium size ontologies where the number of classes is
up to 100 which Pellet can process, e.g. Ontubi (an Ontology for Ubiquitous
Computing) or the wine ontology.

4.2 Experiments

We made the following experiments over the 3 sets of ontologies, using the an-
tipattern detection methods described in Section 3:

1.

9
10

SP: a detection in the original ontologies using SPARQL'? queries and no
inference (only with asserted axioms).

. SP+R: a detection in the materialised ontologies (asserted and inferred ax-
ioms) using SPARQL queries after applying a reasoner (Pellet).

SP_Trans: a transformation of the original ontologies and detection using
SPARQL queries and no inference (only with asserted axioms).
SP_Trans+R: a transformation of the original ontologies and detection in
the materialisation of these harmonised ontologies after applying a reasoner.

All of these ontologies are available from [7].

Let us note that all SPARQL queries in our experiments were automatically con-
verted from original SPARQL-DL queries.

In some of these experiments we also use the keyword MANUAL to refer
to the manual detection process using the basic debugging tools provided by
ontology editors. The manual detection method is applicable only on the an-
tipattern and the W3C/DL ontologies sets. This detection method is a baseline
with respect to what can be detected using current state of the art debugging
tools.

Evaluation of Antipattern Detection Precision We have evaluated the precision
of the antipattern detection process. We have analysed manually each of the
ontologies in our three sets and have assigned to each set one of the following
three values:

— TI (True Inconsistency): the antipattern occurrence participates in the un-
satisfiability of classes or the modelling error.

— UI (Unknown Inconsistency): the antipattern occurrence may be linked to
the unsatisfiability of classes or modelling error, but the evaluator is not sure
about it. Notice that the evaluator may find difficult to make a choice when
the debuggable version of the considered ontology is not available.

— FI (False Inconsistency): the antipattern occurrence does not participate in
the unsatisfiability of classes or modelling error.

4.3 Results

SOFE detection In this case we look for a single atomic axiom written by the
ontology developer. Thus only one SPARQL query is necessary to retrieve SOE
occurrences and only the SP experiment was made over all 3 sets of ontologies.

lset “number (nr.) of results|nr. of TI[nr. of UI[nr. of FI[nr. of ontol
antipattern 16 15 0 1 2
W3C/DL 1 0 1 0 1
web 12 10 2 0 2

Table 1. SOE antipattern detection.

Due to the simplicity of the SOE antipattern, the most suitable detection
method is the first method. Neither reasoner nor transformation process is
needed for the detection of the SOE antipattern. The SPARQL query associ-
ated to the SOE antipattern reached 86% of precision: 25 occurrences over 29
are classified as true inconsistencies.

EID detection The EID antipattern is composed of two atomic axioms, and
two formulae are possible. We defined 8 SPARQL queries associated to this
antipattern. We also use 4 detection methods. Our results are limited to the fact
that some ontologies cannot be processed by a reasoner in a reasonable time.

set [method “nr. of results|nr. of TI|nr. of Ul|nr. of FI|nr. of onto

antipattern|manual 14 - - - 4
antipattern|SP 7 7 0 0 2
antipattern|SP+R 5885 14 5871 0 2
antipattern|SP_Trans 7 7 0 0 2
antipattern|SP_Trans+R 5885 14 5871 0 2
W3C/DL |manual 8 - - - 4
W3C/DL |SP 1 1 0 0 1
W3C/DL |SP+R 48 7 41 0 4
W3C/DL |SP_Trans 5 5 0 0 4
W3C/DL |SP_Trans+R 48 7 41 0 4
web SP 9 9 0 0 1
web SP+R 126 0 126 0 1
web SP_Trans 9 9 0 0 1
web SP_Trans+R 132 0 132 0 1

Table 2. EID antipattern detection.

Table 2 shows the results of our detection methods. We notice that using
a reasoner creates some unexpected occurrences of EID antipattern. Reasoner
infers that an unsatisfiable class is an equivalent to another unsatisfiable class
and they are also disjoint from each others. Thus using a reasoner is not a good
solution for a detection of this antipattern. The transformation improves a little
bit the detection of this antipattern. It seems to be a promising direction of future
work that we should improve the transformation procedure to detect more EID
occurrences.

AIO detection The AIO pattern is composed of 2 atomic axioms. In Section 2
we have presented 4 formulae but in theory more formulae are possible. We
imagine that a class definition can be composed of maximum 4 conjunctions:
C3CCyNC,NCyNC,. We defined 24 SPARQL queries corresponding to the
C1 and Cy classes at different location of formulae. The transformation process
modified the AIO pattern. Thus we added new SPARQL queries associated to
the new pattern: C3 £ C1 M Cy F C3 C C1;C3 E Cs.

Table 3 shows the results of our detection methods for the AIO antipattern.
In this case our results are far from optimal. None of our detection method can
detect the ATO occurrences in the antipattern set. This is due to the incapacity of
our method to detect the atomic axiom Disj(Cq, Cy) without a reasoner. Notice
that the second detection method detects all the occurrences of the AIO pattern
on the W3C/DL set. Thus it means that this antipattern needs a reasoner to be
accurately detected.

OIL detection The OIL pattern is composed of 3 atomic axioms. We have pre-
sented 3 formulae but more formulae are possible depending on the implemen-
tation style of an ontology developer [7]. For these formulae, we imagine that a
class definition can be composed of two conjunctions parts. In all, we defined 84
SPARQL queries.

set [method “nr. of results|nr. of TI|nr. of Ul|nr. of FI|nr. of onto
antipattern| manual 6 - - - 3
antipattern|SP 1 1 0 0 1
antipattern|SP+R 3 2 1 0 2
antipattern|SP_Trans 1 1 0 0 1
antipattern|SP_Trans+R 53761 0 53761 0 2
W3C/DL |manual 9 - - - 8
W3C/DL |SP 2 2 0 0 2
W3C/DL |SP+R 9 9 0 0 8
W3C/DL |SP_Trans 4 2 2 0 3
W3C/DL |SP_Trans+R 236 37 199 0 8
web SP 0 0 0 0 0
web SP_Trans 67 0 67 0 1
Table 3. AIO antipattern detection.
set method nr. of results|nr. of TI|nr. of Uljnr. of FIjnr. of onto
antipattern manual 8 - - - 3
antipattern SP 2 2 0 0 2
antipattern SP+R 2 2 1 0 2
antipattern SP_Trans 2 2 0 0 2
antipattern SP_Trans+R 72 6 66 0 2
web and W3C/DL 0 0 0 0 0

Table 4. OIL antipattern detection.

Results from Table 4 are surprising. In the case of the antipattern ontolo-
gies set we notice that the disjoint atomic axiom was not detected because it
is not stated by the ontology developer. Furthermore using a reasoner produces
unexpected antipattern occurrences. Thus any of our detection methods is good
enough to detect OIL antipattern. Maybe for this specific pattern it is not nec-
essary to detect exactly all the atomic axioms of the pattern. We should limit
our detection method to the beginning of the OIL pattern without the disjoint
axiom.

5 Conclusion and Future Work

In this paper we have shown how antipatterns can be detected using different
methods that are based on the use of SPARQL queries, OWL reasoners and
transformation tools. First, we have presented several antipatterns. Second, we
have proposed different detection methods. Then, we applied them on a set of
publicly available inconsistent ontologies. Finally, we have tried to figure out
what are the best detection methods to be used for each antipattern. In many
cases these antipattern detection methods are very sensitive to the implemen-

tation style of the ontology developer. Thus we recommand to avoid long class
definition and to limit the use of unamed classes. Our future work will focus on
the refinement of the methods that we have proposed in this paper. We will also
try to design new antipatterns and detect them appropriately.

Ondiej Svdb-Zamazal has been partially supported by CSF grant no. P202/10/1825.

References

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Apache jena. http://jena.apache.org/, 2012.

The owl api. http://owlapi.sourceforge.net/, 2012.

Patomat ontology pattern detection tool. http://owl.vse.cz:8080/
DetectionTool/, 2012.

Pellet 2.1: Introducing terp. http://weblog.clarkparsia.com/2010/04/01/
pellet-21-introducing-terp, 2012.

Pellet: Owl 2 reasoner for java. http://clarkparsia.com/pellet/, 2012.
Watson: Exploring the semantic web. http://watson.kmi.open.ac.uk/WS_and_
API.html, 2012.

web site related to our ontology antipattern detection methods. https://sites.
google.com/site/ontologyantipattern, 2012.

K. Clark. Pellint: An ontology repair tool. http://weblog.clarkparsia.com/
2008/07/02/pellint-an-ontology-repair-tool/, 2008.

O. Corcho, C. Roussey, L. M. Vilches Blazquez, and 1. Pérez. Pattern-based OWL
ontology debugging guidelines. In Proceedings of WOP, CEUR Workshop pro-
ceedings, pages 68—82, October 2009.

N. Guarino and C. A. Welty. Evaluating ontological decisions with OntoClean.

Commun. ACM, 45(2):61-65, 2002.

M. Horridge, B. Parsia, and U. Sattler. Laconic and precise justifications in OWL.
In Proceedings of ISWC, pages 323—-338, 2008.

L. Tannone, A. L. Rector, and R. Stevens. Embedding knowledge patterns into
OWL. In Proceedings of ESWC, pages 218-232, 2009.

A. Kalyanpur, B. Parsia, E. Sirin, and J. Hendler. Debugging unsatisfiable classes
in OWL ontologies. Journal of Web Semantics, 3(4):268-293, 2005.

V. Presutti, A. Gangemi, S. David, G.A. de Cea, M.C. Suérez-Figueroa, E. Montiel-
Ponsoda, and M. Poveda. NeOn deliverable D2. 5.1. a library of ontology design
patterns: reusable solutions for collaborative design of networked ontologies. 2008.
A. L. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens,
H. Wang, and C. Wroe. OWL pizzas: Practical experience of teaching OWL-DL:
common errors & common patterns. In Proceedings of EKAW, pages 63—-81, 2004.
C. Roussey, O. Corcho, O. Svdb-Zamazal, F. Scharffe, and S. Bernard. Antipattern
detection in web ontologies: an experiment using sparql queries. In proceedings of
EGC, pages 321-326, 2012.

E. Sirin and B. Parsia. SPARQL-DL: SPARQL query for OWL-DL. In Proceedings
of OWLED, 2007.

H. Stuckenschmidt. Debugging OWL ontologies - a reality check. In Proceedings
of EON;, 2008.

0. Svéb-Zamazal and V. Svitek. Analysing ontological structures through name
pattern tracking. In Proceedings of EKAW, pages 213-228, 2008.

