
Relational Database to RDF Mapping Patterns

Juan Sequeda1, Freddy Priyatna2, and Boris Villazón-Terrazas2

1Department of Computer Science, The University of Texas at Austin
jsequeda@cs.utexas.edu

2OEG-DIA, FI, Universidad Politécnica de Madrid, Spain
{fpriyatna,bvillazon}@fi.upm.es

Abstract. In order to integrate relational databases into Semantic Web
applications, relational databases need to be mapped to RDF. The W3C
RDB2RDF Working Group is in the process of ratifying two standards to
map relational databases to RDF: Direct Mapping and R2RML mapping
language. Through our experience as implementors of two RDB2RDF
systems: Ultrawrap and Morph, and as authors of R2RML mappings, we
have observed mappings that are reusable in order to solve a commonly
occurring problem. In this paper, we have compiled these mappings and
present a non-exhaustive list of RDB2RDF Mapping Patterns. We aspire
that the mapping patterns in this paper are considered as a starting point
for new mapping patterns.

Key words: RDB2RDF, Mapping Patterns, Mapping Language, R2RML,
Relational Databases, SPARQL, SQL

1 Introduction

In order to integrate relational databases into Semantic Web applications, re-
lational databases need to be mapped to RDF. The W3C RDB2RDF Working
Group is in the process of ratifying two standards to map relational databases
to RDF: Direct Mapping[1] and R2RML (Relational Database to RDF Mapping
Language)[2]. Direct Mapping is the default way of representing a relational
database as RDF based on the structure of the database schema. R2RML is a
language for expressing customized mappings from relational databases to RDF.

As implementors of Ultrawrap1[8] and Morph2, two RDB2RDF systems, that
support the Direct Mapping and R2RML standards; and as authors of several
R2RML mappings that have been the basis of several projects including the
W3C RDB2RDF Test Cases[9], we have observed mappings that are reusable in
order to solve a commonly occurring problem. In this paper, we present a series
of reusable mappings, which we define as RDB2RDF Mapping Patterns. The
mappings are represented in R2RML.

We would like to point out that this is not an exhaustive list of mapping
patterns. The mappings patterns that we present are based on our experience.

1http://www.capsenta.com/
2https://github.com/jpcik/morph/

Assuming the RDB2RDF standards are widely adopted, we expect the mapping
patterns to increase. We aspire that the mapping patterns in this paper are
considered as a starting point for new mapping patterns.

2 A Motivating Example

We present an example that motivates the need of RDB2RDF mapping patterns.
Due to lack of space, we do not present an overview of R2RML. We refer the
reader to the R2RML spec [2]. Assume you have a table Student with attributes
id, name, and homephone. An application would like to map the table person
to foaf:Person, create URIs based on the attribute id, map the attribute name
to foaf:name and homephone to foaf:phone. The following R2RML mapping will
produce the desired output:
<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : tableName ” student ”] ;

r r : subjectMap [r r : template ”http :// example . com/ re source /Student /{ id }”;] ;
r r : predicateObjectMap [r r : p r ed i ca t e f o a f : name ;

r r : objectMap [r r : column ”name ”] ;
r r : predicateObjectMap [r r : p r ed i ca t e f o a f : phone ;

r r : objectMap [r r : column ”homephone ”] ;] .

We observe a One to One mapping between tables and ontology classes and
a One to One mapping between attributes and ontology properties.

Now assume that the table Student has a new attribute, mobilephone, which
we would also like to map to foaf:phone. This means that we would need to
have a Many to One mapping between attributes and an ontology property. The
previous mapping could be augmented by adding rr:objectMap [rr:column ”mo-
bilephone”]; to the existing rr:predicateObjectMap that has foaf:phone as a pred-
icate. Another solution would be to repeat the entire rr:predicateObjectMap, but
with a rr:column of mobilephone. This type of pattern impacts query perfor-
mance. The following SPARQL query: SELECT ?s ?o WHERE {?s foaf:phone

?o} would get translated to the following SQL query: SELECT id, homephone

FROM Student UNION SELECT id, mobilephone FROM Student. If we were to
increase the amount of attributes mapped to the same ontology property, the
size of the SQL query would increase. This example suggests that there is a
tradeoff between mapping patterns and query performance. In order to further
study tradeoffs and design decisions of RDB2RDF mappings, it is important
to understand the different types of mapping patterns. In the next section, we
present fourteen mapping patterns which we have observed as implementors of
RDB2RDF systems and authors of R2RML mappings.

3 R2RML Mapping Patterns

A RDB2RDF mapping pattern is a reusable mapping that solves a commonly oc-
curring problem. We present four type of mapping patterns: Attribute Mapping
Patterns, Table Mapping Patterns, Join Mapping Patterns and Value Trans-
lation Patterns. Each pattern consists of a name, a question that defines the
problem that is being addressed, description of the context, description of the
solution in R2RML, an example R2RML mapping, a discussion and related pat-
terns. Some mapping patterns may consist of different R2RML solutions.

3.1 Table Mapping Patterns

Tables in a relational database are (usually) mapped to ontology classes3. Each
record of the table is mapped to an instance of the ontology class. In R2RML,
every TripleMap must have exactly one rr:logicalTable and one rr:subjectMap.
The rr:logicalTable defines the table (or SQL query) that is being mapped. The
rr:subjectMap defines how to generate the subjects for the RDF triples. The fol-
lowing patterns define different ways that a table can be mapped to an ontology
class. Patterns to generate the URIs for the subjects are out of the scope of this
work. We refer the reader to [3].

Pattern 1: One to One Table Mapping

How to map a table to an ontology class?
Context: An application would like to map a tables to an ontology class. More-
over, every record of the tables is mapped to an instance of the corresponding
ontology classes. For example, the table student is mapped to foaf:Person.
Solution: Create a TriplesMap for the table and specify the rr:logicalTable
whose value corresponds to the table name. In the TriplesMap, create a rr:subjectMap
with a rr:template to define the URI template for each row. Finally, the rr:subjectMap
will have a rr:class corresponding to the ontology class for that table.
Example R2RML Mapping
<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : tableName ” student ”] ;

r r : subjectMap [r r : c l a s s f o a f : Person ;
r r : template ”http :// example . com/ re source /Student /{ s i d }”] .

Discussion: This is the simplest pattern for table mapping. This is the case of
the Direct Mapping, which automatically generates a unique ontology class for
each table. However, a user has the option to specify a particular ontology class.
Related Patterns: N/A

Pattern 2: One to Many Table Mapping

How to map a table to several ontology classes?
Context: An application would like to map a table to many ontology classes.
Moreover, every record of the table is mapped to an instance of the corresponding
ontology classes. For example, the table student is mapped to foaf:Person and
ex:Student.
Solution: Create a TriplesMap for the table and specify the rr:logicalTable
whose value corresponds to the table name. In the TriplesMap, create a rr:subjectMap
with a rr:template to define the URI template for each row. Finally, the rr:subjectMap
will have multiple rr:class that correspond to the ontology classes for that table.
Example R2RML Mapping
<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : tableName ” student ”] ;

r r : subjectMap [r r : template
”http :// example . com/ re source /Student /{ s i d }”;
r r : c l a s s f o a f : Person ; r r : c l a s s ex : Student] .

Discussion: This pattern extends Pattern 1 by adding multiple rr:class.
Related Patterns: Pattern 1

3Except for the case when the table represents a many-to-many relationship

Pattern 3: Many to One Table Mapping

How to map several tables to an ontology class?

Context: An application would like to map many tables to an ontology class.
Moreover, every record of these table are mapped to an instance of the corre-
sponding ontology class. For example, the tables student and professor are both
mapped to foaf:Person.

Solution: Repeat the solution in pattern 1 for each table to be mapped.

Example R2RML Mapping

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : tableName ” student ”] ;
r r : subjectMap [r r : c l a s s f o a f : Person ;

r r : template ”http :// example . com/ re source /Student /{ s i d }”] .

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : tableName ” p r o f e s s o r ”] ;
r r : subjectMap [r r : c l a s s f o a f : Person ;

r r : template ”http :// example . com/ re source / Pro f e s s o r /{ s i d }”] .

Discussion: This pattern extends Pattern 1 and it is used when instances of an
ontology class may be distributed over several tables.

Related Patterns: Pattern 1

Pattern 4: Many to Many Table Mapping

How to map several tables to several ontology classes?

Context: An application would like to map a table to several ontology classes.
Additionally, the application would like to map an ontology class to several
tables.

Solution: Repeat solution of pattern 2 for each table to be mapped.

Example R2RML Mapping

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : tableName ” student ”] ;
r r : subjectMap [r r : template ”http :// example . com/ re source /Student /{ s i d }”;

r r : c l a s s f o a f : Person ; r r : c l a s s ex : Academic] .

<TriplesMapProf> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : tableName ” p r o f e s s o r ”] ;
r r : subjectMap [r r : template ”http :// example . com/ re source / Pro f e s s o r /{ s i d }”;

r r : c l a s s f o a f : Person ; r r : c l a s s ex : Academic] .

Discussion: This pattern extends Pattern 3. In addition to instances of an
ontology classes are distributed over several database tables, each row of the
database table produces multiple ontology instances.

Related Patterns: Pattern 2, Pattern 3

3.2 Attribute Mapping Patterns

Attributes of tables are mapped to ontology properties. In R2RML, a TripleMap
can have zero or more rr:predicteObjectMap, which in turn specifies a predicate-
object pair. The following patterns define different ways that an attribute can
be mapped to an ontology property.

Pattern 5: One to One Attribute Mapping

How to map an attribute to an ontology property?
Context: An application would like to map an attribute to an ontology property.
For example, the attribute firstname is mapped to foaf:givenName.
Solution: Given a TripleMap, create a rr:predicateObjectMap for the attribute,
which has only one rr:predicate for the ontology property and a rr:objectMap
for the attribute.
Example R2RML Mapping

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : tableName ” student ”] ;
r r : subjectMap [

r r : template ”http :// example . com/ re source /Student /{ s i d }”;] ;
r r : predicateObjectMap [r r : p r ed i ca t e f o a f : givenName ;

r r : objectMap [r r : column ” f i r s tname ”] ;] .

Discussion: This is the simplest pattern for attribute mapping. This is the
case of the Direct Mapping, which automatically generates a unique ontology
property for each attribute.
Related Patterns: N/A

Pattern 6: One to Many Attribute Mapping

How to map an attribute to several ontology properties?
Context: An application would like to map an attribute to several ontology
properties. For example, the attribute lastname is mapped to foaf:familyName
and ex:apellido.
Solution 1: Given a TripleMap, create a rr:predicateObjectMap for the at-
tribute, which has a rr:predicate for each ontology property and a rr:objectMap
for the attribute.
Example R2RML Mapping for Solution 1

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : tableName ” student ”] ;
r r : subjectMap [r r : template ”http :// example . com/ re source /Student /{ s i d }”;] ;
r r : predicateObjectMap [r r : p r ed i ca t e f o a f : familyName ; r r : p r ed i ca t e ex : a p e l l i d o ;

r r : objectMap [r r : column ” lastname ”] ;]

Solution 2: Repeat the solution for Pattern 5 for the attribute to be mapped
but having the rr:predicate specific to each ontology property
Example R2RML Mapping for Solution 2

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : tableName ” student ”] ;
r r : subjectMap [r r : template ”http :// example . com/ re source /Student /{ s i d }”;] ;
r r : predicateObjectMap [

r r : p r ed i ca t e f o a f : familyName ; r r : objectMap [r r : column ” lastname ”] ;] ;
r r : predicateObjectMap [

r r : p r ed i ca t e ex : a p e l l i d o ; r r : objectMap [r r : column ” lastname ”] ;] .

Discussion: Solution 1 is a short cut for Solution 2.
Related Patterns: Pattern 5

Pattern 7: Many to One Attribute Mapping

How to map several attributes to an ontology property?
Context: An application would like to map several attributes to an ontology
property. For example, the attribute homephone and mobilephone is mapped to
foaf:phone.

Solution 1: Given a TripleMap, create a rr:predicateObjectMap, which has only
a rr:predicate for the ontological property and a rr:objectMap for each attribute.
Example R2RML Mapping for Solution 1

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : tableName ” student ”] ;
r r : subjectMap [r r : template ”http :// example . com/ re source /Student /{ s i d }”;] ;
r r : predicateObjectMap [r r : p r ed i ca t e f o a f : phone ;

r r : objectMap [r r : column ”homephone ”] ; r r : objectMap [r r : column ”mobilephone ”] ;] .

Solution 2: Repeat the solution for Pattern 5 for each attribute to be mapped
Example R2RML Mapping for Solution 2

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : tableName ” student ”] ;
r r : subjectMap [r r : template ”http :// example . com/ re source /Student /{ s i d }”;] ;
r r : predicateObjectMap [r r : p r ed i ca t e f o a f : phone ;

r r : objectMap [r r : column ”homephone ”] ;] ;
r r : predicateObjectMap [r r : p r ed i ca t e f o a f : phone ;

r r : objectMap [r r : column ”mobilephone ”] ;] .

Discussion: Solution 1 is a short cut for Solution 2. As described in the moti-
vating example of Section 2, this pattern impacts performance on queries that
select on the ontology property.
Related Patterns: Pattern 5

Pattern 8: Many to Many Attribute Mapping

How to map several attributes to several ontology properties?
Context: An application would like to map an attribute to several ontology
predicates. Additionally, the application would like to map an ontology predicate
to several attributes.
Solution 1: Combine Solution 1 of Pattern 6 with Solution 1 of Pattern 7.
Example R2RML Mapping for Solution 1

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : tableName ” student ”] ;
r r : subjectMap [r r : template ”http :// example . com/ re source /Student /{ s i d }”;] ;
r r : predicateObjectMap [r r : p r ed i ca t e f o a f : phone ; r r : p r ed i ca t e ex : t e l e f o no ;

r r : objectMap [r r : column ”homephone ”] ; r r : objectMap [r r : column ”mobilephone ”] ;] .

Solution 2: Combine Solution 2 of Pattern 6 with Solution 2 of Pattern 7.
Example R2RML Mapping for Solution 2

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : tableName ” student ”] ;
r r : subjectMap [r r : template ”http :// example . com/ re source /Student /{ s i d }”] ;
r r : predicateObjectMap [r r : p r ed i ca t e f o a f : phone ;

r r : objectMap [r r : column ”homephone ”] ;] ;
r r : predicateObjectMap [r r : p r ed i ca t e f o a f : t e l e f o no ;

r r : objectMap [r r : column ”homephone ”] ;] ;
r r : predicateObjectMap [r r : p r ed i ca t e f o a f : phone ;

r r : objectMap [r r : column ”mobilephone ”] ;] ;
r r : predicateObjectMap [r r : p r ed i ca t e f o a f : t e l e f o no ;

r r : objectMap [r r : column ”mobilephone ”] ;] .

Discussion: Solution 1 is a shortcut for Solution 2.
Related Patterns: Pattern 6 and Pattern 7.

Pattern 9: Concatenate Attributes

How to concatenate attributes and map it to an ontology property?
Context: An application would like to concatenate several attributes and map
the result to an ontology property. For example, concatenate the attributes first-
name and lastname and map it to foaf:name.

Solution 1: Given a TripleMap, create a rr:predicateObjectMap which has a
rr:predicate for the ontology property and the rr:objectMap as a rr:template.
The concatenation is represented as a template.
Example R2RML Mapping for Solution 1

<TriplesMapStudent1> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : tableName ” student ”] ;
r r : subjectMap [r r : template ”http :// example . com/ re source /Student /{ s i d }”] ;
r r : predicateObjectMap [

r r : p r ed i ca t e f o a f : name ; r r : objectMap [r r : template ”{ f i r s tname} { lastname}”] ;] .

Solution 2: Create a new TripleMap with an R2RML view which consists of
a rr:logicalTable that has a rr:sqlQuery which includes the concatenation. Ad-
ditionally, create a rr:predicateObjectMap which has a rr:predicate for the on-
tology property and the rr:objectMap for the attribute which represents the
concatenation in the SQL query.
Example R2RML Mapping for Solution 2

<TriplesMapStudent1> a r r : TriplesMap ; r r : l o g i c a lTab l e [
r r : sqlQuery ”SELECT sid , f i r s tname | | ’ ’ | | lastname AS ful lname FROM student ”] ;

r r : subjectMap [r r : template ”http :// example . com/ re source /Student /{ s i d }”] ;
r r : predicateObjectMap [

r r : p r ed i ca t e f o a f : name ; r r : objectMap [r r : column ” ful lname ”] ;] .

Discussion: Consider the SPARQL query SELECT ?s ?fullname WHERE {?s
foaf:name ?fullname }. Solution 1 would produce a SQL query and concat
the name in the SELECT clause. Solution 2 does the concatenation operation as
a SQL query as specified in rr:sqlQuery and then use this query as a subquery.

So lut ion 1 SQL : SELECT sid , f i r s tname | | ’ ’ | | lastname as ful lname FROM student
So lut ion 2 SQL : SELECT sid , fu l lname

FROM (SELECT sid , f i r s tname | | ’ ’ | | lastname AS ful lname
FROM student)

Note that these queries are semantically equivalent. From a query performance
perspective, they should be equal unless the RDBMS does not have optimizations
for subqueries.
Related Patterns: Pattern 5

3.3 Join Mapping Patterns

Foreign Key relationships among tables can be mapped to ontology properties.
The following patterns define different ways that foreign key relationships can
be mapped to an ontology property.

Pattern 10: Foreign Key between Two Tables

How to represent the relationship between two tables?
Context: An application would like to map a table to an ontology class. How-
ever, some of the property values are stored in another table. Therefore, it is
necessary to perform a join to get those values.
Solution: Given two tables, one table will be considered the child and the other
the parent. Create a TripleMap for each table. Given the child TripleMap, cre-
ate a rr:predicateObjectMap which will have, in addition to the rr:predicate,
a rr:objectMap which has a rr:parentTripleMap and a rr:joinCondition. The
rr:parentTripleMap will point to the parent TripleMap and the rr:joinCondition

will have a rr:child and rr:parent which represent the join attributes in the child
and parent table respectively.
Example R2RML Mapping

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : tableName ” student ”] ;
r r : subjectMap [r r : template ”http :// example . org / r e source /Student /{ s i d }”;] ;
r r : predicateObjectMap [r r : p r ed i ca t e ex : countryOfBirth ;

r r : objectMap [r r : parentTriplesMap <TriplesMapCountry >;
r r : j o inCond i t ion [r r : c h i l d ” c oun t r y o f b i r t h ” ; r r : parent ” c id ” ;] ;] ;] .

<TriplesMapCountry> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : tableName ” country ”] ;
r r : subjectMap [r r : template ”http :// example . org / r e source /Country/{ c id }”;] .

Discussion: This pattern describes an R2RML mapping that joins two tables.
This mapping can also be represented using Pattern 11. However, if a join in-
volves more than two tables, then Pattern 11 must be used. The addition of
another property that involves a join in Pattern 10 means that the user has
to specify a new parent TriplesMap and then refer this parent TriplesMap in a
rr:objectMap for the new property. On the other hand, the rr:logicalTable value
stays the same and no changes needed.
Related Patterns: Pattern 11

Pattern 11: Foreign Keys between Two or more Tables

How to represent the relationship between two or more tables?
Context: An application would like to map a table to an ontology class. How-
ever, some of the property values are stored in other tables. Therefore, it is
necessary to perform a joins to get those values.
Solution: Create a TripleMap with an R2RML view which consists of a rr:logicalTable
that has a rr:sqlQuery which includes a SQL query that represent explictly the
join(s).
Example R2RML Mapping

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : sqlQuery ”””
SELECT s . s i d AS sid , c . country code AS country code FROM student s , country c
WHERE s . c oun t r y o f b i r t h = c . count ry id ” ” ”] ;

r r : subjectMap [r r : template ”http :// example . org / r e source /Student /{ s i d }”;] ;
r r : predicateObjectMap [r r : p r ed i ca t e ex : countryOfBirth ;

r r : objectMap [r r : template ”http :// example . org / r e source /Country/{ c id }”;] ;] .

Discussion: If the join is between two tables, then Pattern 10 can be used.
However, if the join is between more than two tables, then Pattern 10 can not
be used and the SQL query must be made explicit. Unlike Pattern 10, Pattern
11 does not require to have additional TriplesMap needed in order to map the
property that needs a join. An addition of a new property that involves a join
does not require to create additional TriplesMap instance, but the user has to
modify the SQL query.
Related Patterns: Pattern 10

Pattern 12: Many to Many Table

How to map a table that represents a many-to-many relationship between two
other tables to an ontology property?
Context: A many-to-many table represents a relationship between two entities.
For example, the table StudentSport records the relationship of which Students

play a specific Sport. Several students can play a sport and several sports can be
played by a student. An application would like to map the many-to-many table
to an ontology property.
Solution: Create a TriplesMap for the many-to-many table. Specify the rr:logicalTable
whose value corresponds to the table name of the many-to many table. In the
TriplesMap, create a rr:subjectMap with a rr:template to define the URI tem-
plate for one of the tables of the many-to-many relationship. Create an instance
of rr:predicateObjectMap which has a rr:predicate for the ontology property.
Finally, create a rr:objectMap with a rr:template to define the URI template for
the other table of the many-to-many relationship.
Example R2RML Mapping

<TriplesMapStudentSport> a r r : TriplesMap ;
r r : l o g i c a lTab l e [r r : tableName ”StudentSport ”] ;
r r : subjectMap [r r : template ”http :// example . org / r e source /Student /{ s tudent id }”;] ;
r r : predicateObjectMap [r r : p r ed i ca t e ex : p lays ;
r r : objectMap [r r : template ”http :// example . org / r e source /Sport /{ spo r t i d }”] ;] .

Discussion: This mapping can also be represented through Pattern 11 given
that it consists of a join between three tables (Student, StudentSport and Sport).
Related Patterns: Pattern 11

3.4 Value Translation Patterns

It is common that specific values in the database are code values which need to be
translated to URIs. R2RML relies on SQL’s CASE statement for the translation.
The following patterns define different ways that values can be translated.

Pattern 13: Translate Values

How to map values in a table to URIs?
Context: An application would like to map values in the data to IRIs. For
example, if the value in a job attribute is engineer, then a special IRI needs to
be generated. A translation using rr:template is not possible because templates
can only use the same values from the database.
Solution: Create a new TripleMap with an R2RML view which consists of a
rr:logicalTable that has a rr:sqlQuery. Represents the translation in the SQL
query by using SQL CASE statement.
Example R2RML Mapping

<#TriplesMap1> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : sqlQuery ”””
SELECT EMP.∗ , (CASE JOB

WHEN ’CLERK’ THEN ’ genera l−o f f i c e ’ WHEN ’NIGHTGUARD’ THEN ’ secur i ty ’
WHEN ’ENGINEER’ THEN ’ eng ineer ing ’ END) ROLE FROM EMP ”””] ;

r r : subjectMap [r r : template ”http :// data . example . com/employee/{EMPNO}”;] ;
r r : predicateObjectMap [r r : p r ed i ca t e ex : r o l e ;

r r : objectMap [r r : template ”http :// data . example . com/ r o l e s /{ROLE}”;
r r : termType r r : IRI ;] ;] .

Discussion: The R2RML language does not have the expressivity to represent
such value translation. Therefore, translating values has been pushed into SQL
using the CASE statement. Query performance depends on the optimizations
that a RDBMS has for the CASE statement.
Related Patterns: N/A

Pattern 14: Translate Values between Tables

How to map values in a referenced table

Context: An application would like to map a table to an ontology class. The ta-
ble has a foreign key that references another table. The referenced table contains
columns whose values need to be translated into URIs.

Solution 1: Combine Pattern 11 and Pattern 13.

Example R2RML Mapping for Solution 1

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : sqlQuery ”””
SELECT s . s i d AS sid , a . a id AS aid , (CASE a . a r t i c l e t y p e

WHEN ’ ppr ’ THEN ’Paper ’ WHEN ’ ths ’ THEN ’ Thesis ’) AS Art ic leType
FROM student s , a r t i c l e a WHERE s . s i d=a . author ”””] ;

r r : subjectMap [r r : template ”http :// example . com/ re source /Student /{ s i d }”;] ;
r r : predicateObjectMap [r r : p r ed i ca t e ex : isAuthorOf ;

r r : objectMap [r r : template ”http :// example . com/ re source /{Artic leType }/{ aid } ” ;] ;] .

Solution 2: Use Pattern 10

Example R2RML Mapping for Solution 2

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [r r : tableName ” student ”] ;
r r : subjectMap [r r : template ”http :// example . com/ re source /Student /{ s i d }”;] ;
r r : predicateObjectMap [r r : p r ed i ca t e ex : isAuthorOf ; r r : objectMap [

r r : parentTriplesMap <TriplesMapPaper >;
r r : j o inCond i t ion [r r : c h i l d ” s id ” ; r r : parent ” author ” ;] ;] ;] ;

r r : predicateObjectMap [r r : p r ed i ca t e ex : isAuthorOf ; r r : objectMap [
r r : parentTriplesMap <TriplesMapThesis >;
r r : j o inCond i t ion [r r : c h i l d ” s id ” ; r r : parent ” author ” ;] ;] ;] .

<TriplesMapPaper> a r r : TriplesMap ; r r : l o g i c a lTab l e [
r r : sqlQuery ”””SELECT author , a id FROM a r t i c l e WHERE a r t i c l e t y p e =’ppr ’”””] ;

r r : subjectMap [r r : template ”http :// example . com/ re source /Paper/{ aid }”;] .

<TriplesMapThesis> a r r : TriplesMap ; r r : l o g i c a lTab l e [
r r : sqlQuery ”””SELECT author , a id FROM a r t i c l e WHERE a r t i c l e t y p e =’ths ’”””] ;

r r : subjectMap [r r : template ”http :// example . com/ re source /Thes is /{ aid }”;] .

Discussion: The selection of the possible solutions affect the way a user add a
new article type, and also the SQL needed to execute the mappings.

In solution 1, to add a new article type, a user just need to modify the SQL
query, appending the corresponding WHEN THEN pair statement. In solution
2, a new (parent) TriplesMap instance is needed for each article type. Then, in
the child TriplesMap, every article type needs a predicateObjectMap property.

Now consider the following SPARQL query:
SELECT ?s ?o WHERE { ?s ex:isAuthorOf ?o }. The resulting SQL query for
Solution 1 is the following:

SELECT sid , ArticleType , a id FROM (
SELECT s . s i d AS sid , a . a id AS aid , (CASE a . a r t i c l e t y p e

WHEN ’ ppr ’ THEN ’Paper ’ WHEN ’ ths ’ THEN ’ Thesis ’) AS Art ic leType
FROM student s , a r t i c l e a WHERE s . s i d=a . author)

The resulting SQL query for Solution 2 is the following:

SELECT sid , a id
FROM student S , (SELECT author , a id FROM a r t i c l e WHERE a r t i c l e t y p e =’ppr ’) P
WHERE S . s i d = P. author UNION
SELECT sid , a id
FROM student S , (SELECT author , a id FROM a r t i c l e WHERE a r t i c l e t y p e =’ths ’) T
WHERE S . s i d = T. author

Note that the generated SQL queries are very different and may have an
impact on query performance depending on the RDBMS.

Related Patterns: Pattern 10, Pattern 11, Pattern 13

4 Related Work

In the (Object-Oriented) software community, patterns are used to describe soft-
ware design structures that can be used over and over again in different systems.
They provide a general solution that has to be applied in a particular context,
in which the design considerations serve to decide whether the pattern is use-
ful and how it could be implemented best [4]. A kind of software patterns are
the re-engineering software patterns [6]. These patterns describe how to change
a legacy system into a new, refactored system that fits current conditions and
requirements. Their main goal is to offer a solution for re-engineering prob-
lems. They are also on a specific level of abstraction, that describes a process of
re-engineering without proposing a complete methodology, and sometimes can
suggest which type of tool to use. Therefore RDB2RDF mappings can be seen
as re-engineering patterns because they map a legacy system (RDBMS) into a
new system (RDF).

In the Semantic Web community, the Ontology Design Pattern portal4 has
been created in order to help in the design and quality of ontologies. Additionally,
Dodds and Davis presents a pattern catalogue for modeling, publishing and con-
suming Linked Data [3]. These Linked Data patterns do not include RDB2RDF
mapping patterns. Therefore our work is complemented by the Linked Data pat-
terns of Dodds and Davis. Furthermore, Hert et al. presents a comparison of the
expressivity of RDB2RDF mapping languages [5]. A framework for comparison
is introduced, which consists of a set of fifteen features such as support for dif-
ferent types of mappings, datatypes, named graphs, blank nodes etc. R2RML
supports all but one feature (write access) . Moreover, Rivero et al. presents
fifteen RDF to RDF mapping patterns [7]. Some of these patterns are specific
to RDF to RDF mappings such as Remove Language Tag while others are not
applicable to RDB2RDF mappings such as Rename Class or Rename Property.

5 Conclusions and Future Work

In this paper, we have introduced fourteen RDB2RDF mapping patterns5, which
we have observed as reusable mapping throughout our experience as RDB2RDF
system developers and R2RML mapping authors. As previously mentioned, this
is a non-exhaustive list of mapping patterns and we aspire that the mapping
patterns presented in this paper serve as a starting point. We foresee new map-
ping patterns in areas such as Named Graphs, Blank Nodes for anonymous or
sensitive data, Metadata, Languages, Datatypes. We hope that this work encour-
ages the Semantic Web community to further extend the RDB2RDF mapping
patterns.

In certain patterns, we have identified two R2RML mapping solutions. These
solutions may or may not have performance issues. As future work, we will

4http://ontologydesignpatterns.org/
5The mappings are stored at http://mappingpedia.linkeddata.es/pattern/

DataPatterns/

thoroughly study the tradeoff between mapping patterns and query performance.
Additionally, we will investigate the overlap between ontology design patterns,
linked data patterns, the feature set of Hert et al. and the RDF to RDF mapping
patterns of Rivero et al. with RDB2RDF mappings in general.

Finally, we have to see how to align the proposed RDB2RDF mapping pat-
terns with Re-engineering Patterns category in the ODP Portal.

Acknowledgments: This work has been supported by the PlanetData, Ba-
belData, and myBigData projects. Juan F. Sequeda was supported by the NSF
Graduate Research Fellowship. We would like to kindly thank all W3C RDB2RDF
Working Group members. We thank Richard Cyganiak for discussions.

References

1. M. Arenas, A. Bertails, E. Prud’hommeaux, and J. Sequeda. Direct map-
ping of relational data to RDF. W3C Working Draft 29 May 2012,
http://www.w3.org/TR/2012/WD-rdb-direct-mapping-20120529/.

2. S. Das, S. Sundara, and R. Cyganiak. R2rml: Rdb to rdf mapping language. W3C
Working Draft 29 May 2012, http://www.w3.org/TR/2012/WD-r2rml-20120529/.

3. L. Dodds and I. Davis. Linked data patterns-a pattern catalogue for modelling,
publishing, and consuming linked data. http://patterns.dataincubator.org/book/,
2011.

4. H. Edwards, R. Puckett, and A. Jolly. Analyzing Communication Patterns in Soft-
ware Engineering Projects. In Software Engineering Research and Practice, pages
310–315, 2006.

5. M. Hert, G. Reif, and H. C. Gall. A comparison of rdb-to-rdf mapping languages.
In Proceedings of the 7th International Conference on Semantic Systems, 2011.

6. R. Pooley and P. Stevens. Software Reengineering Patterns. Technical report, 1998.
7. C. R. Rivero, A. Schultz, C. Bizer, and D. Ruiz. Benchmarking the performance of

linked data translation systems. In Proceedings of the 5th Linked Data on the Web
Workshop (LDOW), 2012.

8. J. F. Sequeda and D. P. Miranker. Ultrawrap: Sparql execution on relational data.
Technical Report TR-12-10, The University of Texas at Austin, Department of
Computer Sciences, 2012.

9. B. Villazón-Terrazas and M. Hausenblas. R2rml and direct mapping test cases. W3C
Editor’s Draft 24 July 2012, http://www.w3.org/2001/sw/rdb2rdf/test-cases/.

