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From “raw” data to patterns

• Moving from “raw” knowledge resources to networked ontologies require: [cf. C-ODO]
• Ontology requirement analysis (domain(s), task(s), and sustainability constraints for 

ontologies to be built/managed)
• Tool/resource requirement analysis (functionalities to be covered by tools, and 

competences needed)
• Project planning (deciding on knowledge resources, economic resources, team 

composition and responsibilities, data copyright management, tools)
• Workflow decision making (specially for reengineering and argumentation)
• Rationale elicitation (“critiquing” the reengineered data)
• Providing solutions (e.g. based on design patterns, or conveying new ones)

• Not one, “best” methodology
• A project can start spontaneously to solve a rationale elicitation problem, can be planned in 

order to reengineer knowledge resources, or to reuse existing ontologies or patterns, etc.
• A project can be started either with or without requirement analyses
• Even the solutions can consist only of a “bulk” reengineering process, without explicit 

patterns
• eXtreme Design?

• In this tutorial, I concentrate on solutions based on ontology design patterns
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OPs and patterns in other disciplines 1/3

• One might expect OPs to be easily comparable to software engineering design 
patterns.

• The same analogy has been done with architecture, linguistics, and other disciplines. 

• Ontology engineering and software engineering show many similarities from 
the pragmatic viewpoint, but they are quite different from the theoretical 
viewpoint. 
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OPs and patterns in other disciplines 2/3

• We use comparisons between ontology engineering and software engineering for 
clarifying concepts and intuitions behind the definitions. 

• We do not take theoretical aspects of OP as dependent on those of software 
engineering (or other fields). 
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OPs and patterns in other disciplines 3/3

• Our concept of “pattern” is associable with the wider “good/best practice” of software 
engineering.

• It includes a wider range of solution types. For example: 
• naming conventions in software engineering are considered good practices, they are not 

design patterns.
• In ontology engineering “naming” is an important design activity (it can have a strong 

impact on the usage of the ontology e.g., for selection, mapping, etc.).
• We classify ontology naming conventions as OPs.

• We distinguish the different types of OPs by grouping them into six families. 

• Each family addresses different kinds of problems, and can be represented with 
different levels of formality.
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• We also distinguish between ontological resources that are not OPs and Ontology 
Design Anti-Patterns (AntiOPs)

Types of Ontology Design Patterns (OPs)
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Presentation OPs

Definition
• Presentation OPs deal with usability and readability of ontologies from a user 

perspective. 

• They are meant as good practices that support the reuse of patterns by facilitating 
their evaluation and selection. 

• Two types:
• Naming OPs
• Annotation OPs
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Naming OPs

Definition
• Naming OPs are conventions on how to create names for namespaces, files, and 

ontology elements in general (classes, properties, etc.). 

• Naming OPs are good practices that boost ontology readability and understanding by 
humans, by supporting homogeneity in naming procedures.
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Examples of Naming OPs 1/2  

• Namespace declared for ontologies.

• It is recommended to use the base URI of the organization that publishes the ontology
• e.g. http://www.w3.org for the W3C, http://www.fao.org for the FAO, http://www.loa-cnr.it for 

the Laboratory for Applied Ontologies (LOA) etc.) 

• followed by a reference directory for the ontologies 
• e.g. http://www.loa-cnr.it/ontologies/

• It is also important to choose an approach for encoding versioning, either on the 
name, or on the reference directory

http://www.w3.org
http://www.w3.org
http://www.fao.org
http://www.fao.org
http://www.loa-cnr.it
http://www.loa-cnr.it
http://www.loa-cnr.it/ontologies/
http://www.loa-cnr.it/ontologies/
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Examples of Naming OPs  2/2

• Class names

• They should not contain plurals, unless explicitly required by the context
• Names like Areas is considered bad practice, if e.g. an instance of the class Areas is a 

single area, not a collection of areas

• It is also recommended to use readable names instead of e.g. alphanumerical codes
• Non-readable name can be used (even if not recommended) if associated to proper 

annotations (see Annotation OPs)

• It is useful to include the name of the parent class as a suffix of the class name 
• e.g. MarineArea rdfs:subClassOf Area

• Class names conventionally start with a capital letter 
• e.g. Area instead of area
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Annotation OPs

• Annotation OPs provide annotation properties or annotation property schemas that 
are meant to improve the understandability of ontologies and their elements
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Examples of Annotation OPs

• RDF Schema labels and comments (crucial for manual selection and evaluation)

• Each class and property should be annotated with meaningful labels 
• i.e., by means of the annotation property rdfs:label, with also translations in different 

languages.

• Each ontology and ontology element should be annotated with the rationale they are 
based on 
• i.e., by means of the annotation property rdfs:comment 
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Reasoning OPs


Definition
• Reasoning OPs are applications of Logical OPs oriented to obtain certain reasoning 

results, based on the behavior implemented in a reasoning engine
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Examples of Reasoning OPs

• Precise
• Classification 
• Subsumption 
• Inheritance 
• Materialization
• De-anonymizing
• Normalization [6]

• Approximate
• Approximate classification
• Similarity induction
• Taxonomy induction
• Relevance detection
• Latent semantic indexing
• Automatic alignment
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Classification and Subsumption RPs

• Automatic classification
• Yes-Man(x) =df Man(x) ∧ ∃y(hasFiancee(x,y))
• Man(John)
• hasFiancee(John,Mary)
• ∴ Yes-Man(John)

• Automatic subsumption
• Yes-Man(x) =df Man(x) ∧ ∃y(hasFiancee(x,y))
• ItalianMan(x) ⇒ Man(x)

• hasFrenchFiancee(x,y) ⇒ hasFiancee(x,y)

• ∴ ((ItalianMan(x) ∧ ∃y(hasFrenchFiancee(x,y)) ⇒ Yes-Man(x))
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Inheritance and Materialization RPs

• Inheritance
• Man(x) ⇒ Human(x)

• Yes-Man(x) ⇒ Man(x) 

• ∴ (Yes-Man(x) ⇒ Human(x))

• Materialization
• hasFiancee(x,y) ⇔ hasFiance(y,x)

• hasFiancee(John,Mary)
• ∴ hasFiance(Mary,John)
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Construction RP

• Query result construction 
• CONSTRUCT   { ?x insanelyDesires ?z }

WHERE       { 
?x hasFiancee ?y .
?y hasFemaleFriend ?z . }

• hasFiancee(John,Mary)
• hasFemaleFriend(Mary,Pamela)
• ∴ insanelyDesires(John,Pamela)
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Rule firing RP

• SWRL rule firing
• (hasFiancee(x,y) ∧ hasFemaleFriend(y,z)) ⇒ insanelyDesires(x,z)  

• hasFiancee(John,Mary)
• hasFemaleFriend(Mary,Pamela)
• ∴ insanelyDesires(John,Pamela)
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Normalization

• Normalizations [5,6]:
• Name all relevant classes, so that no anonymous complex class descriptions are left 

(restriction de-anonymizing) 
• Name anonymous individuals (skolem de-anonymizing) 
• Materialize the subsumption hierarchy (automatic subsumption) and normalize names 
• Instantiate the deepest possible class or property (“leaf”)
• Normalize property instances (property value materialization) 
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Common misconceptions

• Disjointness of primitives 
• Interpreting domain and range 
• And and Or 
• Quantification 
• Closed and Open Worlds
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Disjointness

• By default, primitive classes are not disjoint. 
• Unless we explicitly say so, the description (Animal and Vegetable) is not 

inconsistent. 
• Similarly with individuals -- the so-called Unique Name 
• Assumption (often present in DL languages) does not hold, and individuals 

are not considered to be distinct unless explicitly asserted to be so.
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Domain and Range

• OWL allows us to specify the domain and range of properties. 
• Note that this is not interpreted as a constraint as you might expect. 
• Rather, the domain and range assertions allow us to make inferences about 

individuals. 
• Consider the following: 

• ObjectProperty(employs domain(Company) range(Person)) 
• Individual(IBM value(employs Jim)) 

• If we havenʼt said anything else about IBM or Jim, this is not an error. 
However, we can now infer that IBM is a Company and Jim is a Person.
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And/Or and quantification

• The logical connectives And and Or often cause confusion 
• Tea or Coffee? 
• Milk and Sugar? 

• Quantification can also be contrary to our intuition. 
• Universal quantification over an empty set is true. 
• Aldo is a member of restriction(insanelyDesires allValuesFrom beetle) 

• Existential quantification may imply the existence of an individual that we 
donʼt know the name of.
• Aldo is a member of restriction(insanelyDesires someValuesFrom 

FemaleFriend) 
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Close and Open World assumptions

• The standard semantics of OWL makes an Open World Assumption (OWA). 
• We cannot assume that all information is known about all the individuals 

in a domain. 
• Negation as contradiction 

• Anything might be true unless it can be proven false 

• Closed World Assumption (CWA) 
• Named individuals are the only individuals in the domain 
• Negation as failure. 

• If we canʼt deduce that x is an A, then we know it must be a (¬ A). 
• Facilitate reasoning about a particular state of affairs. 
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Correspondence OPs

Definition
• Correspondence OPs include Reengineering OPs and Mapping OPs. 

• Reengineering OPs provide designers with solutions to the problem of transforming 
a conceptual model, which can even be a non-ontological resource, into a new 
ontology. 

• Mapping OPs are patterns for creating semantic associations between two existing 
ontologies. 
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Reengineering OPs

Definition
• Reengineering OPs are transformation rules applied in order to create a new ontology 

(target model) starting from elements of a source model

• The target model is an ontology, while the source model can be either an ontology, or 
a non-ontological resource 
• e.g., a thesaurus concept, a data model pattern, a UML model, a linguistic structure, etc. 

• Two types:
• Schema reengineering OPs are rules for transforming a non-OWL DL metamodel into an 

OWL DL ontology

• Refactoring OPs provide designers with rules for transforming, i.e. “refactoring”, an existing 
OWL DL “source” ontology into a new OWL DL “target” ontology

• E.g. a guideline to reengineer a piece of an OWL ontology in presence of a requirement change, as when 
moving from individuals to classes, or from object properties to classes. See also N-ary relation 
tranformation pattern
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Schema Reengineering OP example: kos2skosABox

• The rule (2.1) states that, given a KOS, it maps to an instance of the class 
skos:ConceptSchema

• The rule (2.2) maps each “Descriptor” from a KOS to a specific instance of the class 
skos:Concept

• The rule (2.3) relates to the case of having two “Descriptors” d1 and d2 in a KOS, 
where d1 has “Broader Term” d2. Given the corresponding instances of skos:Concept 
skos:c1 and skos:c2, the broader term relationship between d1 and d2 maps to an 
object property value having the subject skos:c1, the object property skos:broader, 
and the object skos:c2

• The rule (2.4) relates to the case of having two “Descriptors” d1 and d2 in the KOS 
that are “Related Terms”. Given the corresponding instances of skos:Concept skos:c1 
and skos:c2, the related term relationship between d1 and d2 maps to a (symmetric) 
object property value having the subject skos:c1, the object property skos:related, and 
the object skos:c2
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Mapping OPs

Definition
• Mapping OPs refer to the semantic relations between mappable elements:

• equivalent to, (not equivalent to)
• foaf:Agent ≡ wn16:Agent-3

• contained in, (not contained in)
• foaf:Person ⊑ geo:SpatialThing

• overlap with
• foaf:Person ⊓ dul:Person

• disjoint with
• (dul:PhysicalPerson ⊓ dul:SocialPerson) = ∅

• Also called “correspondence patterns” in [16]
• We also consider an additional semantic relation that we call cloned from

• ontology element oe1 in one ontology is the clone of an ontology element oe2 in another 
ontology

• this relation is put in place when extracting a Content Ontology Design Pattern (see later)



  Computational Ontologies, Bologna, September 2008

Structural OPs

• Structural OPs includes Logical OPs and Architectural OPs.

• Architectural OPs affect the overall shape of the ontology either internally or 
externally. 
• i.e., an internal Architectural OP identifies a composition of Logical OPs that are to be 

exclusively used in the design of an ontology.

• Logical OPs are compositions of logical constructs that solve a problem of 
expressivity.



  Computational Ontologies, Bologna, September 2008

Architectural OPs

Definition
• Architectural OPs affect the overall shape of the ontology: their aim is to constrain 

ʻhow the ontology should look likeʼ

• Architectural OPs emerged as design choices motivated by specific needs 
• e.g., computational complexity constraints. 

• They are useful as reference documentation for those initially approaching the design 
of an ontology
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Architectural OPs

• Architectural OPs can be of two types: internal APs and external APs
• Internal APs are defined in terms of collections of Logical OPs that have to be exclu- 

sively employed when designing an ontology 
• e.g., an OWL species, or the varieties of description logics: http://www.cs.man.ac.uk/

~ezolin/dl/
• External APs are defined in terms of meta-level constructs 

• e.g., the modular architecture consists of an ontology network, where the involved 
ontologies play the role of modules. The modules are connected by the import operation. 
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Examples of Internal APs

 Taxonomy
– A hierarchical structure of classes only related by subsumption relations. 

 Lightweight ontology. Taxonomy + other features, e.g.:
– A class can be related to other classes through the disjointWith relation.
– Object and datatype properties can be defined and used to relate classes.
– A specific domain and range can be associated with defined object and datatype 

properties. 
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Taxonomy AP

• Intent
• To create an ontology consisting only of a subsumption graph
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Primitives-Modifiers-Definables AP 1/2

• Intent: to create a compositional content architecture within an ontology
• Choose some main axes
• Add abstractions where needed; identify relations
• Identify definable things, make names explicit
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Modular AP

• Intent
• To represent an ontology into self-consistent pieces, according to some criterion, and with 

an explicit ordering
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36

Stratified AP (external AP)

Domain ontology

{Sculpture,Restoration, Mythical being, Caryatid, Doric order, Armilla, Fresco, …}

       Core ontology (specific domain-independent)

 {Work of art, Painting technique, Author, Artistic period, Plastic art, Interpretation, …}

           Foundational ontology (domain-independent)

{Object, Process, Part, Time, Location, Representation, Plan, …}

Inherits from

Inherits from

• Intent
• To create a layering of modules, according to some criterion
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Logical OPs

Definition
• A Logical OP is a formal expression, whose only parts are expressions from a logical 

vocabulary e.g., OWL DL, that solves a problem of expressivity

• Logical OPs are independent from a specific domain of interest 
• i.e. they are content-independent 

• Logical OPs depend on the expressivity of the logical formalism that is used for 
representation
• They help to solve design problems where the primitives of the representation language do 

not directly support certain logical constructs

• They can be of two types: logical macros, and transformation patterns
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Logical macros

• Logical macros provide a shortcut to model a recurrent intuitive logical expression

Example: 
the macro: ∇R.C [7]
colloquially means  “every R must be a C”

formally: ∃R.⊤ ⨅ ∀R.C
in OWL: 

the combination of an owl:allValuesFrom restriction with an owl:someValuesFrom 
restriction.
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Transformation patterns

Definition
• Transformation patterns translate a logical expression from a logical language into 

another, which approximates the semantics of the first, in order to find a trade-off 
between requirements and expressivity

• We describe transformation patterns by two diagrams at different levels: 
• The first diagram shows the meta model elements needed for representing the pattern in 

OWL DL. Such elements are defined in http://www.loa-cnr.it/codeps/owl/owl10a.owl, an 
OWL ontology that encodes OWL DL constructs in a metamodel. The ontology is referred 
to by the prefix “a:” 

• The second diagram shows an example of usage for the Logical OP

http://www.loa-cnr.it/codeps/owl/owl10a.owl
http://www.loa-cnr.it/codeps/owl/owl10a.owl
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Examples of Transformation patterns: N-ary relation (1/2)
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Examples of Transformation pattern: N-ary relation (2/2)

But beware of identification constraints! [15]


