
Pattern-based design, part I

Aldo Gangemi
Valentina Presutti

Semantic Technology Lab
ISTC-CNR, Rome

 Computational Ontologies, Bologna, September 2008

From “raw” data to patterns

• Moving from “raw” knowledge resources to networked ontologies require: [cf. C-ODO]
• Ontology requirement analysis (domain(s), task(s), and sustainability constraints for

ontologies to be built/managed)
• Tool/resource requirement analysis (functionalities to be covered by tools, and

competences needed)
• Project planning (deciding on knowledge resources, economic resources, team

composition and responsibilities, data copyright management, tools)
• Workflow decision making (specially for reengineering and argumentation)
• Rationale elicitation (“critiquing” the reengineered data)
• Providing solutions (e.g. based on design patterns, or conveying new ones)

• Not one, “best” methodology
• A project can start spontaneously to solve a rationale elicitation problem, can be planned in

order to reengineer knowledge resources, or to reuse existing ontologies or patterns, etc.
• A project can be started either with or without requirement analyses
• Even the solutions can consist only of a “bulk” reengineering process, without explicit

patterns
• eXtreme Design?

• In this tutorial, I concentrate on solutions based on ontology design patterns

 Computational Ontologies, Bologna, September 2008

OPs and patterns in other disciplines 1/3

• One might expect OPs to be easily comparable to software engineering design
patterns.

• The same analogy has been done with architecture, linguistics, and other disciplines.

• Ontology engineering and software engineering show many similarities from
the pragmatic viewpoint, but they are quite different from the theoretical
viewpoint.

 Computational Ontologies, Bologna, September 2008

OPs and patterns in other disciplines 2/3

• We use comparisons between ontology engineering and software engineering for
clarifying concepts and intuitions behind the definitions.

• We do not take theoretical aspects of OP as dependent on those of software
engineering (or other fields).

 Computational Ontologies, Bologna, September 2008

OPs and patterns in other disciplines 3/3

• Our concept of “pattern” is associable with the wider “good/best practice” of software
engineering.

• It includes a wider range of solution types. For example:
• naming conventions in software engineering are considered good practices, they are not

design patterns.
• In ontology engineering “naming” is an important design activity (it can have a strong

impact on the usage of the ontology e.g., for selection, mapping, etc.).
• We classify ontology naming conventions as OPs.

• We distinguish the different types of OPs by grouping them into six families.

• Each family addresses different kinds of problems, and can be represented with
different levels of formality.

 Computational Ontologies, Bologna, September 2008

• We also distinguish between ontological resources that are not OPs and Ontology
Design Anti-Patterns (AntiOPs)

Types of Ontology Design Patterns (OPs)

 Computational Ontologies, Bologna, September 2008

Presentation OPs

Definition
• Presentation OPs deal with usability and readability of ontologies from a user

perspective.

• They are meant as good practices that support the reuse of patterns by facilitating
their evaluation and selection.

• Two types:
• Naming OPs
• Annotation OPs

 Computational Ontologies, Bologna, September 2008

Naming OPs

Definition
• Naming OPs are conventions on how to create names for namespaces, files, and

ontology elements in general (classes, properties, etc.).

• Naming OPs are good practices that boost ontology readability and understanding by
humans, by supporting homogeneity in naming procedures.

 Computational Ontologies, Bologna, September 2008

Examples of Naming OPs 1/2

• Namespace declared for ontologies.

• It is recommended to use the base URI of the organization that publishes the ontology
• e.g. http://www.w3.org for the W3C, http://www.fao.org for the FAO, http://www.loa-cnr.it for

the Laboratory for Applied Ontologies (LOA) etc.)

• followed by a reference directory for the ontologies
• e.g. http://www.loa-cnr.it/ontologies/

• It is also important to choose an approach for encoding versioning, either on the
name, or on the reference directory

http://www.w3.org
http://www.w3.org
http://www.fao.org
http://www.fao.org
http://www.loa-cnr.it
http://www.loa-cnr.it
http://www.loa-cnr.it/ontologies/
http://www.loa-cnr.it/ontologies/

 Computational Ontologies, Bologna, September 2008

Examples of Naming OPs 2/2

• Class names

• They should not contain plurals, unless explicitly required by the context
• Names like Areas is considered bad practice, if e.g. an instance of the class Areas is a

single area, not a collection of areas

• It is also recommended to use readable names instead of e.g. alphanumerical codes
• Non-readable name can be used (even if not recommended) if associated to proper

annotations (see Annotation OPs)

• It is useful to include the name of the parent class as a suffix of the class name
• e.g. MarineArea rdfs:subClassOf Area

• Class names conventionally start with a capital letter
• e.g. Area instead of area

 Computational Ontologies, Bologna, September 2008

Annotation OPs

• Annotation OPs provide annotation properties or annotation property schemas that
are meant to improve the understandability of ontologies and their elements

 Computational Ontologies, Bologna, September 2008

Examples of Annotation OPs

• RDF Schema labels and comments (crucial for manual selection and evaluation)

• Each class and property should be annotated with meaningful labels
• i.e., by means of the annotation property rdfs:label, with also translations in different

languages.

• Each ontology and ontology element should be annotated with the rationale they are
based on
• i.e., by means of the annotation property rdfs:comment

 Computational Ontologies, Bologna, September 2008

Reasoning OPs

Definition
• Reasoning OPs are applications of Logical OPs oriented to obtain certain reasoning

results, based on the behavior implemented in a reasoning engine

 Computational Ontologies, Bologna, September 2008

Examples of Reasoning OPs

• Precise
• Classification
• Subsumption
• Inheritance
• Materialization
• De-anonymizing
• Normalization [6]

• Approximate
• Approximate classification
• Similarity induction
• Taxonomy induction
• Relevance detection
• Latent semantic indexing
• Automatic alignment

 Computational Ontologies, Bologna, September 2008

Classification and Subsumption RPs

• Automatic classification
• Yes-Man(x) =df Man(x) ∧ ∃y(hasFiancee(x,y))
• Man(John)
• hasFiancee(John,Mary)
• ∴ Yes-Man(John)

• Automatic subsumption
• Yes-Man(x) =df Man(x) ∧ ∃y(hasFiancee(x,y))
• ItalianMan(x) ⇒ Man(x)

• hasFrenchFiancee(x,y) ⇒ hasFiancee(x,y)

• ∴ ((ItalianMan(x) ∧ ∃y(hasFrenchFiancee(x,y)) ⇒ Yes-Man(x))

 Computational Ontologies, Bologna, September 2008

Inheritance and Materialization RPs

• Inheritance
• Man(x) ⇒ Human(x)

• Yes-Man(x) ⇒ Man(x)

• ∴ (Yes-Man(x) ⇒ Human(x))

• Materialization
• hasFiancee(x,y) ⇔ hasFiance(y,x)

• hasFiancee(John,Mary)
• ∴ hasFiance(Mary,John)

 Computational Ontologies, Bologna, September 2008

Construction RP

• Query result construction
• CONSTRUCT { ?x insanelyDesires ?z }

WHERE {
?x hasFiancee ?y .
?y hasFemaleFriend ?z . }

• hasFiancee(John,Mary)
• hasFemaleFriend(Mary,Pamela)
• ∴ insanelyDesires(John,Pamela)

 Computational Ontologies, Bologna, September 2008

Rule firing RP

• SWRL rule firing
• (hasFiancee(x,y) ∧ hasFemaleFriend(y,z)) ⇒ insanelyDesires(x,z)

• hasFiancee(John,Mary)
• hasFemaleFriend(Mary,Pamela)
• ∴ insanelyDesires(John,Pamela)

 Computational Ontologies, Bologna, September 2008

Normalization

• Normalizations [5,6]:
• Name all relevant classes, so that no anonymous complex class descriptions are left

(restriction de-anonymizing)
• Name anonymous individuals (skolem de-anonymizing)
• Materialize the subsumption hierarchy (automatic subsumption) and normalize names
• Instantiate the deepest possible class or property (“leaf”)
• Normalize property instances (property value materialization)

 Computational Ontologies, Bologna, September 2008

Common misconceptions

• Disjointness of primitives
• Interpreting domain and range
• And and Or
• Quantification
• Closed and Open Worlds

 Computational Ontologies, Bologna, September 2008

Disjointness

• By default, primitive classes are not disjoint.
• Unless we explicitly say so, the description (Animal and Vegetable) is not

inconsistent.
• Similarly with individuals -- the so-called Unique Name
• Assumption (often present in DL languages) does not hold, and individuals

are not considered to be distinct unless explicitly asserted to be so.

 Computational Ontologies, Bologna, September 2008

Domain and Range

• OWL allows us to specify the domain and range of properties.
• Note that this is not interpreted as a constraint as you might expect.
• Rather, the domain and range assertions allow us to make inferences about

individuals.
• Consider the following:

• ObjectProperty(employs domain(Company) range(Person))
• Individual(IBM value(employs Jim))

• If we havenʼt said anything else about IBM or Jim, this is not an error.
However, we can now infer that IBM is a Company and Jim is a Person.

 Computational Ontologies, Bologna, September 2008

And/Or and quantification

• The logical connectives And and Or often cause confusion
• Tea or Coffee?
• Milk and Sugar?

• Quantification can also be contrary to our intuition.
• Universal quantification over an empty set is true.
• Aldo is a member of restriction(insanelyDesires allValuesFrom beetle)

• Existential quantification may imply the existence of an individual that we
donʼt know the name of.
• Aldo is a member of restriction(insanelyDesires someValuesFrom

FemaleFriend)

 Computational Ontologies, Bologna, September 2008

Close and Open World assumptions

• The standard semantics of OWL makes an Open World Assumption (OWA).
• We cannot assume that all information is known about all the individuals

in a domain.
• Negation as contradiction

• Anything might be true unless it can be proven false

• Closed World Assumption (CWA)
• Named individuals are the only individuals in the domain
• Negation as failure.

• If we canʼt deduce that x is an A, then we know it must be a (¬ A).
• Facilitate reasoning about a particular state of affairs.

 Computational Ontologies, Bologna, September 2008

Correspondence OPs

Definition
• Correspondence OPs include Reengineering OPs and Mapping OPs.

• Reengineering OPs provide designers with solutions to the problem of transforming
a conceptual model, which can even be a non-ontological resource, into a new
ontology.

• Mapping OPs are patterns for creating semantic associations between two existing
ontologies.

 Computational Ontologies, Bologna, September 2008

Reengineering OPs

Definition
• Reengineering OPs are transformation rules applied in order to create a new ontology

(target model) starting from elements of a source model

• The target model is an ontology, while the source model can be either an ontology, or
a non-ontological resource
• e.g., a thesaurus concept, a data model pattern, a UML model, a linguistic structure, etc.

• Two types:
• Schema reengineering OPs are rules for transforming a non-OWL DL metamodel into an

OWL DL ontology

• Refactoring OPs provide designers with rules for transforming, i.e. “refactoring”, an existing
OWL DL “source” ontology into a new OWL DL “target” ontology

• E.g. a guideline to reengineer a piece of an OWL ontology in presence of a requirement change, as when
moving from individuals to classes, or from object properties to classes. See also N-ary relation
tranformation pattern

 Computational Ontologies, Bologna, September 2008

Schema Reengineering OP example: kos2skosABox

• The rule (2.1) states that, given a KOS, it maps to an instance of the class
skos:ConceptSchema

• The rule (2.2) maps each “Descriptor” from a KOS to a specific instance of the class
skos:Concept

• The rule (2.3) relates to the case of having two “Descriptors” d1 and d2 in a KOS,
where d1 has “Broader Term” d2. Given the corresponding instances of skos:Concept
skos:c1 and skos:c2, the broader term relationship between d1 and d2 maps to an
object property value having the subject skos:c1, the object property skos:broader,
and the object skos:c2

• The rule (2.4) relates to the case of having two “Descriptors” d1 and d2 in the KOS
that are “Related Terms”. Given the corresponding instances of skos:Concept skos:c1
and skos:c2, the related term relationship between d1 and d2 maps to a (symmetric)
object property value having the subject skos:c1, the object property skos:related, and
the object skos:c2

 Computational Ontologies, Bologna, September 2008

Mapping OPs

Definition
• Mapping OPs refer to the semantic relations between mappable elements:

• equivalent to, (not equivalent to)
• foaf:Agent ≡ wn16:Agent-3

• contained in, (not contained in)
• foaf:Person ⊑ geo:SpatialThing

• overlap with
• foaf:Person ⊓ dul:Person

• disjoint with
• (dul:PhysicalPerson ⊓ dul:SocialPerson) = ∅

• Also called “correspondence patterns” in [16]
• We also consider an additional semantic relation that we call cloned from

• ontology element oe1 in one ontology is the clone of an ontology element oe2 in another
ontology

• this relation is put in place when extracting a Content Ontology Design Pattern (see later)

 Computational Ontologies, Bologna, September 2008

Structural OPs

• Structural OPs includes Logical OPs and Architectural OPs.

• Architectural OPs affect the overall shape of the ontology either internally or
externally.
• i.e., an internal Architectural OP identifies a composition of Logical OPs that are to be

exclusively used in the design of an ontology.

• Logical OPs are compositions of logical constructs that solve a problem of
expressivity.

 Computational Ontologies, Bologna, September 2008

Architectural OPs

Definition
• Architectural OPs affect the overall shape of the ontology: their aim is to constrain

ʻhow the ontology should look likeʼ

• Architectural OPs emerged as design choices motivated by specific needs
• e.g., computational complexity constraints.

• They are useful as reference documentation for those initially approaching the design
of an ontology

 Computational Ontologies, Bologna, September 2008

Architectural OPs

• Architectural OPs can be of two types: internal APs and external APs
• Internal APs are defined in terms of collections of Logical OPs that have to be exclu-

sively employed when designing an ontology
• e.g., an OWL species, or the varieties of description logics: http://www.cs.man.ac.uk/

~ezolin/dl/
• External APs are defined in terms of meta-level constructs

• e.g., the modular architecture consists of an ontology network, where the involved
ontologies play the role of modules. The modules are connected by the import operation.

 Computational Ontologies, Bologna, September 2008

Examples of Internal APs

 Taxonomy
– A hierarchical structure of classes only related by subsumption relations.

 Lightweight ontology. Taxonomy + other features, e.g.:
– A class can be related to other classes through the disjointWith relation.
– Object and datatype properties can be defined and used to relate classes.
– A specific domain and range can be associated with defined object and datatype

properties.

 Computational Ontologies, Bologna, September 2008

Taxonomy AP

• Intent
• To create an ontology consisting only of a subsumption graph

 Computational Ontologies, Bologna, September 2008

Primitives-Modifiers-Definables AP 1/2

• Intent: to create a compositional content architecture within an ontology
• Choose some main axes
• Add abstractions where needed; identify relations
• Identify definable things, make names explicit

 Computational Ontologies, Bologna, September 2008

Modular AP

• Intent
• To represent an ontology into self-consistent pieces, according to some criterion, and with

an explicit ordering

 Computational Ontologies, Bologna, September 2008

36

Stratified AP (external AP)

Domain ontology

{Sculpture,Restoration, Mythical being, Caryatid, Doric order, Armilla, Fresco, …}

 Core ontology (specific domain-independent)

 {Work of art, Painting technique, Author, Artistic period, Plastic art, Interpretation, …}

 Foundational ontology (domain-independent)

{Object, Process, Part, Time, Location, Representation, Plan, …}

Inherits from

Inherits from

• Intent
• To create a layering of modules, according to some criterion

 Computational Ontologies, Bologna, September 2008

Logical OPs

Definition
• A Logical OP is a formal expression, whose only parts are expressions from a logical

vocabulary e.g., OWL DL, that solves a problem of expressivity

• Logical OPs are independent from a specific domain of interest
• i.e. they are content-independent

• Logical OPs depend on the expressivity of the logical formalism that is used for
representation
• They help to solve design problems where the primitives of the representation language do

not directly support certain logical constructs

• They can be of two types: logical macros, and transformation patterns

 Computational Ontologies, Bologna, September 2008

Logical macros

• Logical macros provide a shortcut to model a recurrent intuitive logical expression

Example:
the macro: ∇R.C [7]
colloquially means “every R must be a C”

formally: ∃R.⊤ ⨅ ∀R.C
in OWL:

the combination of an owl:allValuesFrom restriction with an owl:someValuesFrom
restriction.

 Computational Ontologies, Bologna, September 2008

Transformation patterns

Definition
• Transformation patterns translate a logical expression from a logical language into

another, which approximates the semantics of the first, in order to find a trade-off
between requirements and expressivity

• We describe transformation patterns by two diagrams at different levels:
• The first diagram shows the meta model elements needed for representing the pattern in

OWL DL. Such elements are defined in http://www.loa-cnr.it/codeps/owl/owl10a.owl, an
OWL ontology that encodes OWL DL constructs in a metamodel. The ontology is referred
to by the prefix “a:”

• The second diagram shows an example of usage for the Logical OP

http://www.loa-cnr.it/codeps/owl/owl10a.owl
http://www.loa-cnr.it/codeps/owl/owl10a.owl

 Computational Ontologies, Bologna, September 2008

Examples of Transformation patterns: N-ary relation (1/2)

 Computational Ontologies, Bologna, September 2008

Examples of Transformation pattern: N-ary relation (2/2)

But beware of identification constraints! [15]

