
Computational Ontologies
Content Ontology Design Patterns

Aldo Gangemi
Valentina Presutti

Laboratory for Applied Ontology (ISTC-CNR), Roma
{aldo.gangemi, valentina.presutti}@istc.cnr.it

Computational Ontologies, Bologna, September 2008

Course Outline

• Ontologies and the Semantic Web
• Ontology Design and Ontology Design Patterns
• Content Ontology Design Patterns
• Design by Re-Engineering

2

CPs: some theory

 Computational Ontologies, Bologna, September 2008

Content OPs (CPs)

• CPs encode conceptual, rather than logical design patterns.
• Logical OPs solve design problems independently of a particular conceptualization
• CPs are patterns for solving design problems for the domain classes and properties

that populate an ontology, therefore they address content problems

• CPs are instantiations of Logical OPs (or of compositions of Logical OPs), featuring a
non-empty signature

• Hence, they have an explicit non-logical vocabulary for a specific domain of interest,
i.e. they are content-dependent

• Modeling problems solved by CPs have two components: domain and requirements.
• A same domain can have many requirements (e.g. different scenarios in a clinical

information context)
• A same requirement can be found in different domains (e.g. different domains with a

same “expert finding” scenario)
• A typical way of capturing requirements is by means of competency questions [11]

 Computational Ontologies, Bologna, September 2008

Peter Clarkʼs idea

• A pattern is a theory template. It denotes a structure that is invariant under signature
transformation (morphism). Pattern validity in an application is then left to a subjective
decision.

• E.g. the axiom:
• [If a consumer is connected to a producer, then it is supplied]
• ∀c((consumer(c) ∧ ∃p(producer(p) ∧ connects(c,p))) → supplied(c))

• via signature morphism becomes e.g. in an application:
• [If a light is connected to a battery, then it is powered]
• ∀c((light(c) ∧ ∃p(battery(p) ∧ connects(c,p))) → powered(c))
• But if a pattern is just an untyped structure, there are no ways to distinguish a Logical OP

vs. a CP

 Computational Ontologies, Bologna, September 2008

CPs vs. Logical OPs

∀c((consumer(c) ∧ ∃p(producer(p) ∧ connects(c,p))) → supplied(c))

SubClassOf
 ((intersectionOf
 Consumer
 (restriction(connects someValuesFrom(Producer))))
 Supplied)

∀c((φ(c) ∧ ∃p(ψ(p) ∧ ρ(c,p))) → χ(c))

SubClassOf
 ((intersectionOf
 owl:Class:φ
 (restriction(owl:ObjectProperty:ρ someValuesFrom(owl:Class:ψ))))
 owl:Class:χ)

• In OWL, this is a GCI (General Concept Inclusion) axiom. Not a typical LP

Logical OP:
no specific vocabulary

CP:
specific (non-logical) vocabulary

 Computational Ontologies, Bologna, September 2008

Formal characteristics of OWL CPs

• (Small) ontology morphing
• “being a part of something at some time”

• Downward subsumption of at least one element
• “being a component of a system at some time”

• Only rarely GCI axioms like in Clarkʼs example
• Mostly graphs of classes and properties that are self-connected through axioms

(subClassOf, equivalentClass, domain, range, disjointFrom)
• ObjectProperty(component domain(System))

• Usually there is an underlying n-ary relation (sometimes polymorphic)
• component(s,e,t) → System(s) ∧ Entity(e) ∧ Time(t)
• ? component(s,e,t,...) → System(s) ∧ Entity(e) ∧ Time(t) ∧ ...(...)

 Computational Ontologies, Bologna, September 2008

Characteristics of CPs

• Requirement-covering components
• They are defined in terms of the requirements (or cqs) they satisfy

• Computational components.
• CPs are language-independent, and should be encoded in a high-order

representation language.
• Nevertheless, their (sample) representation in a computational logic that can be

processed by parsers and automatic reasoners is needed in order to (re)use
them as building blocks in ontology design.

• Small, autonomous components.
• A CP is a small, autonomous ontology and ensures a certain set of

inferences to be enabled on its corresponding knowledge base.
• Smallness and autonomy of CPs facilitate ontology designers: composing

CPs enables them to govern the complexity of the whole ontology.
• CPs require a critical size, so that their diagrammatical visualizations are

aesthetically acceptable and easily memorizable.

 Computational Ontologies, Bologna, September 2008

• Hierarchical components.
• A CP can be an element in a partial order, where the ordering relation

requires that at least one of the classes or properties in the pattern is
specialized.

• A hierarchy of CPs can be built by specializing or generalizing some of the
elements (either classes or relations).

• For example, the agent-role pattern can be specialized to the person-taking-
a-musician-role pattern.

• Cognitively relevant components.
• CP visualization must be intuitive and compact, and should catch relevant,

“core” notions of a domain.
• An interesting result from cognitive learning is that the development of expert

skills typically “selects” patterns of concepts that are richly interconnected,
and in normal cases, these patterns are applied without an explicit reference
to the underlying detailed knowledge acquired during the training period.

• A CP must contain the central notions that “make rational thinking move” for
an expert in a given domain for a given task.

 Computational Ontologies, Bologna, September 2008

Characteristics of CPs

• Reasoning-relevant components
• They allow some form of inference (minimal axiomatization, e.g. not an

isolated class)
• Linguistically relevant components.

• Many CPs nicely match linguistic patterns called frames.
• A frame can be described as a lexically founded ontology design pattern.

• Frames typically encode argument structures for verbs, e.g. the frame Desiring
associates elements (or “semantic roles”) such as Experiencer, Event,
FocalParticipant, LocationOfEvent, etc. The richest repository of frames is
FrameNet.

• Frames can be used for validating CPs with respect to lexical coverage, for
lexicalizing them,and can be reengineered in order to populate the CP
catalogue

• Best practice components.
• A CP should be used to describe a “best practice” of modelling.
• Best practices are intended as local, thus derived from experts.
• The quality of CPs is currently based on the personal experience and taste

of the proposers, or on the provenance of the knowledge resource where the
pattern comes from.

 Computational Ontologies, Bologna, September 2008

Presentation

• A catalogue of CPs
• http://www.ontologydesignpatterns.org (odp-web)
• catalogue entry

• Annotation properties:
• http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl
• annotation of OWL implementation of CPs

http://www.ontologydesignpatterns.org
http://www.ontologydesignpatterns.org
http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl
http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl

 Computational Ontologies, Bologna, September 2008

An example of CP: Agent Role

 Computational Ontologies, Bologna, September 2008

An example of CP: Agent Role Instantiation

• Scenario: Aldo Gangemi is a senior researcher. He is also father and saxophonist.

 Computational Ontologies, Bologna, September 2008

An example of CP: Time Interval

 Computational Ontologies, Bologna, September 2008

An example of CP: Time Interval Instantiation

• Scenario: January 2008 starts at 2008-01-01 and ends at 2008-01-31

 Computational Ontologies, Bologna, September 2008

Covering

• The covering property expresses the fact that a CP satisfies a set CQ of competency
questions (cq1,..., cqn).

cov(CP, CQ)

• A cqi can be transformed to a query qi to be submitted to a knowledge base.

• A CP covers CQ if it is as expressive as it is needed to store the necessary
knowledge for answering q1, . . . ,qn .

(Re)use situations:
matching CPs covering against local problems

 Computational Ontologies, Bologna, September 2008

Representing local problems

• Local problems can be expressed in different ways:
• use cases, scenarios, user requirements, local competency questions (cqs), etc.

• Following [11] all can be transformed to local “cqs”.
• Red Hot Chili Peppers recorded the Stadium Arcadium album during 2005
• When did Red Hot Chili Peppers record the Stadium Arcadium album?
• Which albums did Red Hot Chili Peppers record during 2005?
• ...

• Local “cqs” are not usually at the same level of generality as the cqs of CPs
• e.g., they may contain reference to instance element e.g. Stadium Arcadium
• we need to abstract them
• When did a certain band record a certain album?
• Which albums did a certain band record during a certain time period?
• ...

 Computational Ontologies, Bologna, September 2008

What we mean by matching cqs to CPs

• What do we mean by matching a cq to CPs?
• To compare the local cqs to the cqs covered by a CP in order to evaluate the

CP suitability for solving the local problems.
• There is not yet automatic support for this task, hence it is performed as a

human task (in this tutorial).
• Ongoing work on automatic support for CP selection starting from local cqs

• parsing of requirements and extraction of cqs
• formalization of cqs
• NLP support to match cqs terminology to CP lexicalizations
• case-based reasoning [13]
• ontology matching (tomorrowʼs tutorial)
• ...

 Computational Ontologies, Bologna, September 2008

Summary of reuse situations and examples

• Precise or redundant matching
• Broader or narrower matching
• Partial matching

 Computational Ontologies, Bologna, September 2008

Precise or redundant matching

• Precise matching
• the set of relevant elements of the cqs completely matches the set of CP ontology

elements
• Redundant matching

• the set of relevant elements of the cqs completely matches a subset of CP ontology
elements

• For example consider the following local scenario:
• an agent plays a certain role.

• It can be expressed by the cqs included in the following set:
• CQ={which agent did play a specific role?}

• From the previous CP examples we know that
cov(agent role, CQ)

• The CP can be reused as it is by importing it in the ontology
• A usage operation is identified

• import

 Computational Ontologies, Bologna, September 2008

Import

• Import is the basic mechanism for ontology reuse.

• It is also the only one directly supported in the OWL vocabulary
• i.e., owl:import.

• Import is applicable to ontologies, hence also to CPs.

• If an ontology O2 imports an ontology O1, all the ontology elements and OWL
axioms from O1 are included in O2 .

• The imported ontology elements and axioms cannot be modified
• i.e., the ontology elements and axioms are read-only entities for O2.

• By importing a CP, an ontology ensures the set of inferences allowed by the CP
in its corresponding knowledge base.

 Computational Ontologies, Bologna, September 2008

Sample import

 Computational Ontologies, Bologna, September 2008

Broader/narrower matching

• Broader matching:
• The cqs covered by a CP are more general than the local ones.
• The CP has firstly to be imported, then it has to be specialized in order to cover the

local scenarios.

• Narrower matching:
• The cqs covered by a CP are more specific than the local ones.
• The CP has firstly to be imported, then it has to be generalized in order to cover the

local scenarios.

• Two usage operations are identified:
• specialization
• generalization

 Computational Ontologies, Bologna, September 2008

Specialization

• A content pattern CP2 specializes CP1 if at least one ontology element of CP2 is subsumed
by an ontology element of CP1

• i.e., either by rdfs:subClassOf or rdfs:subPropertyOf

 Computational Ontologies, Bologna, September 2008

Broader matching example

• Consider the following scenario:
• a person plays a certain role.

• it can be expressed by the competency question included in the following set:
• CQ1={who did play a certain role?}

• From the previous example we know that
cov(agent role, Req)

• where CQ is more general than CQ1

• We can import agent role (prefix ar:) and define the class Person in the following
way:

Person rdfs:subClassOf ar:Agent

 Computational Ontologies, Bologna, September 2008

Specialization and Generalization of CPs

• Specialization introduces a partial order between CPs, which is defined in terms
of their taxonomical order

• The subsumption relation between ontology elements of two CPs determines
which of the two CPs is more or less general than the other one

• Specialization and generalization only rely on rdf:subClassOf, and
owl:subPropertyOf OWL axioms

• If two CPs have specialized elements in both directions, neither of the two cases
apply. Maintaining a partial order when adapting CPs is anyway a good practice

 Computational Ontologies, Bologna, September 2008

Partial matching

• The CP does not cover all aspects of the local cqs

• The local use case has to be partitioned into smaller pieces.

• One of these pieces will be covered by the selected CP.

• For the other pieces, other CPs have to be selected.

• All selected CPs have to be imported and composed.

• One additional usage operation is identified:
• composition

 Computational Ontologies, Bologna, September 2008

Composition

• The composition operation relates two CPs and results into a new ontology

• The resulting ontology is composed of the union of the ontology elements and
axioms from the two CPs, plus the axioms (e.g. disjointness, equivalence, etc.)
that are added in order to link the CPs

• The composition of CP1 and CP2 consists of creating a semantic association
between CP1 and CP2 by adding at least one new axiom, which involves ontology
elements from both CP1 and CP2

• Typically, also new elements (“expansion”) are added when composing

 Computational Ontologies, Bologna, September 2008

Sample composition

 Computational Ontologies, Bologna, September 2008

Partial matching example

• For example, consider the following competency questions:
• cq1 : who did play a specific role in a certain period?
• cq2 : which role does a certain person have at a certain time?

• From previous examples we know that
• agent role covers partially cq1 and cq2, as it allows to represent agents and the role

they play
• time interval covers partially cq1 and cq2, as it allows to represent time intervals

• The ontology resulting from the composition of these two CPs covers both cq1
and cq2

• Is that true?

 Computational Ontologies, Bologna, September 2008

Expansion

• Given that a CP is associated with two unique sets:
• OEcp1={oe1,...,oen} of all ontology elements from CP1
• AXcp1={ax1,...,axn} of all axioms from CP1. The expansion operation relates a CP to a

set of ontology elements, and a set of axioms.

• Expansion consists of adding new ontology elements and axioms to a CP.

• The resulting ontology is composed of the ontology elements and axioms of the
CP, plus the added ontology elements and axioms.

• The added ontology elements and axioms do not match any CP, otherwise we
would have a composition of CPs.

• Given a CP1 such that cov(CP1, CQ1), a set of ontology elements OE, and a set
of OWL axioms AX, the expansion of CP1 by means of OE and AX consists of
creating a new ontology O which contains all the ontology elements and axioms
of CP1, OE, and AX, and such that cov(O, CQ1).

 Computational Ontologies, Bologna, September 2008

Where do CPs come from?

• Content ontology design patterns (CPs) come from the experience of
ontology engineers in modeling foundational, core, or domain
ontologies

• There are four ways of creating CPs, which can be summarized as
follows:
• Reengineering from patterns expressed in other data models

• Data model patterns, Lexical Frames, Workflow patterns, Knowledge discovery
patterns, etc.

• Specialization/Generalization/Composition of other CPs
• Extraction from reference ontologies (by cloning)
• Creation by combining extraction, specialization, generalization, composition,

and expansion

 Computational Ontologies, Bologna, September 2008

Clone

• The extraction process relies on the clone operation

• The clone operation consists of duplicating an ontology element, which is
used as a prototype.

 Computational Ontologies, Bologna, September 2008

Types of clone operation

• Shallow clone
• consists of creating a new ontology element oe2 by duplicating an existing

ontology element oe1 . OWL restrictions of and axioms defined for oe1 and
oe2 will be exactly the same

• Deep clone:
• consists of creating a new ontology element oe2 by duplicating an existing

ontology element oe1 , and by deep-cloning a new ontology element for each
one that is referred in oe1 ʼs axiomatization, recursively

• Partial clone:
• consists of deep-cloning an ontology element, but by keeping only a subset

of its axioms, and of partial-cloning the kept elements, recursively.
• Some ontology design tools support the shallow clone operation

• e.g., TopBraid Composer
• Deep clone and partial clone are not yet supported by any existing tool.

 Computational Ontologies, Bologna, September 2008

The extraction process

 Computational Ontologies, Bologna, September 2008

CP definition (finally!)

Definition
• CPs are distinguished networked ontologies and have their own namespace
• They cover a specific set CQ of competency questions (requirements), which

represent the problem they provide a solution for
• A CP emerges from existing conceptual models and can be extracted from a

reference ontology (based on the clone operation), can be reengineered from
other conceptual models (e.g. data models), can be created by composition of
other CPs, by expansion of a CP, and either by specialization or
generalization of another CP

• A CP is associated with two sets, which are both unique:
• the set of its ontology elements, and the set of its OWL axioms

• CPs instantiate Logical OPs, or some composition of them
• Furthermore, CPs show a set of pragmatic characteristics

 Computational Ontologies, Bologna, September 2008

Pattern-based ontology design method: eXtreme ontology Design (XD)

• Inspired to eXtreme Programming basic rules
• e.g., pair programming, test-oriented, continue integration, etc.

• Main principles
• divide & conquer

• understand the task and express it by means of competency questions
• re-use “good” solutions i.e., ontology design patterns
• evaluate the result against the task

• We will apply an XD iteration with CPs

 Computational Ontologies, Bologna, September 2008

Sample XD iteration

• Sentence: Charlie Parker is the alto sax player on Lover Man, Dial, 1946
• Charlie Parker (person)
• the alto sax player (player role)
• on Lover Man (tune)
• Dial (publisher)
• 1946 (recording year)

• CQs
• what persons do play a musical instrument?
• on what tune?
• for what publisher?
• in what recording year?

• Queries
• SELECT ?x ?y WHERE { ?x ?r ?y . ?x a :Person . ?y a :PlayerRole }
• SELECT ?x ?z WHERE { ?x ?r ?y . ?x a :Person . ?x ?s ?z . ?z a :Tune }
• SELECT ?z ?w WHERE { ?z ?t ?w . ?z a :Tune . ?w a :Publisher }
• SELECT ?z ?k WHERE { ?z :recordingYear ?k . ?z a :Tune . ?k a xsd:gYear }

Alternative abstractions do exist!

 Computational Ontologies, Bologna, September 2008

cont.d

• Retrieve/Match cqs to CPs, or possibly propose new ones
• agentrole.owl, timeindexedpersonrole.owl, timeinterval.owl, ...

• Specialize/Compose/Expand CPs to local cq terminology
• person-playerrole, playing-instrument-on-a-tune, playing-on-a-tune-in-recordingyear

• Populate ABox
• Person(CharlieParker), PlayerRole(AltoSaxPlayer), Tune(LoverMan),

Session(LoverManWithParkerOnDial), ...
• Run unit test/Iterate until fixed

• SELECT ?x ?y ?z ?w ?k
• WHERE {

• ?x ?r ?y .
• ?x a :Person .
• ?y a :PlayerRole .
• ?x ?s ?z .
• ?z a :Tune .
• ?z ?t ?w .
• ?w a :Publisher .
• ?z :recordingYear ?k .
• ?k a xsd:gYear }

• ?x=CharlieParker ?y=AltoSaxPlayer ?z=LoverMan ?w=Dial ?k=1946

 Computational Ontologies, Bologna, September 2008

XD iteration with Content OPs
• Requirements are divided into small stories
• get your story (local problem)
• divide & conquer

• read carefully the story and divide them into simple sentences s1,..,sn
FOR EACH SENTENCE si
• transform si to an instance-free sentence (“abstraction”)

• an instance can be either an individual or a property value (fact)
• transform the instance-free sentence to local competency questions (cqs)
• translate local cqs to queries to be submitted to the knowledge base, and collect them in a unit test [12]
• match the CP coverage to the local cqs
• identify the CPs you need, and associate each CP with the local cqs it covers

• if any local competency question remains uncovered, define separate small ontologies that cover them, and import
them into the ontology. Treat these as CPs (you might want to propose them on the odp-web)

• identify ontology elements to be specialized, and specialize them
• identify axioms and ontology elements to involve in the composition of chosen CPs, and compose them

• i.e., define the composition axioms
• expand the ontology in order to cover uncovered competency question
• populate the ontology ABox with the instances from the story

• complete the ABox with additional instances if needed
• test using the collected queries and fix until all tests succeed
END FOR
• Integrate...

