
Languages

Aldo Gangemi
Valentina Presutti

The Semantic Web Layers

RDF

• RDF stands for Resource Description Framework

• It is a W3C Recommendation
• http://www.w3.org/RDF

• RDF is a graphical formalism (+ XML syntax + semantics)
• for representing metadata
• for describing the semantics of information in a machine-accessible way

• Provides a simple data model based on triples.

http://www.w3.org/RDF
http://www.w3.org/RDF

RDF Data Model

• Statements are <subject, predicate, object> triples:
• <Sean,hasColleague,Ian>

• Can be represented as a graph:

• Statements describe properties of resources

• A resource is any object that can be pointed to by a URI:
• The generic set of all names/addresses that are short strings that refer to

resources
• a document, a picture, a paragraph on the Web, http://www.cs.man.ac.uk/

index.html, a book in the library, a real person (?), isbn://0141184280

• Properties themselves are also resources (URIs)

• •

• •8

OWL Overview, SSSW'07 15

The RDF Data Model

• Statements are <subject, predicate, object> triples:
– <Sean,hasColleague,Ian>

• Can be represented as a graph:

• Statements describe properties of resources

• A resource is any object that can be pointed to by a URI:
– The generic set of all names/addresses that are short strings that

refer to resources

– a document, a picture, a paragraph on the Web,
http://www.cs.man.ac.uk/index.html, a book in the library, a real
person (?), isbn://0141184280

• Properties themselves are also resources (URIs)

Sean Ian
hasColleague

OWL Overview, SSSW'07 16

Linking Statements

• The subject of one statement can be the object of another

• Such collections of statements form a directed, labeled
graph

• Note that the object of a triple can also be a “literal” (a
string)

Sean Ian
hasColleague

Carole http://www.cs.man.ac.uk/~horrocks

hasColleague

hasHomePage

“Sean K. Bechhofer”

hasName

http://www.cs.man.ac.uk/index.html
http://www.cs.man.ac.uk/index.html
http://www.cs.man.ac.uk/index.html
http://www.cs.man.ac.uk/index.html

Linking Statements

• The subject of one statement can be the object of another

• Such collections of statements form a directed, labeled graph

• Note that the object of a triple can also be a “literal” (a string)

• •

• •8

OWL Overview, SSSW'07 15

The RDF Data Model

• Statements are <subject, predicate, object> triples:
– <Sean,hasColleague,Ian>

• Can be represented as a graph:

• Statements describe properties of resources

• A resource is any object that can be pointed to by a URI:
– The generic set of all names/addresses that are short strings that

refer to resources

– a document, a picture, a paragraph on the Web,
http://www.cs.man.ac.uk/index.html, a book in the library, a real
person (?), isbn://0141184280

• Properties themselves are also resources (URIs)

Sean Ian
hasColleague

OWL Overview, SSSW'07 16

Linking Statements

• The subject of one statement can be the object of another

• Such collections of statements form a directed, labeled
graph

• Note that the object of a triple can also be a “literal” (a
string)

Sean Ian
hasColleague

Carole http://www.cs.man.ac.uk/~horrocks

hasColleague

hasHomePage

“Sean K. Bechhofer”

hasName

What does RDF give us?

• A mechanism for annotating data and resources.

• Single (simple) data model.

• Syntactic consistency between names (URIs).

• Low level integration of data.

RDF(S): RDF Schema

• RDF gives a formalism for meta data annotation, and a way to write it down in XML,
but it does not give any special meaning to vocabulary such as subClassOf or type

• Interpretation is an arbitrary binary relation

• RDF Schema extends RDF with a schema vocabulary that allows you to define basic
vocabulary terms and the relations between those terms
• Class, type, subClassOf,
• Property, subPropertyOf, range, domain
• it gives “extra meaning” to particular RDF predicates and resources
• this “extra meaning”, or semantics, specifies how a term should be interpreted

RDF/RDF(S) “Liberality”

• No distinction between classes and instances (individuals)
• Properties can themselves have properties
• No distinction between language constructors and ontology vocabulary, so

constructors can be applied to themselves/each other

What does RDF(S) give us?

• Ability to use simple schema/vocabularies when describing our resources.

• Consistent vocabulary use and sharing.

• Simple inference

Need for a web ontology language

• But RDFS not a suitable foundation for Semantic Web
• Too weak to describe resources in sufficient detail

• Requirements for web ontology language:
• Compatible with existing Web standards (XML, RDF, RDFS)
• Easy to understand and use (based on familiar KR idioms)
• Formally specified and of “adequate” expressive power
• Possible to provide automated reasoning support

 Computational Ontologies, Bologna, September 2008

Some premises to web ontology design

• Some recall of logics: propositional logics, first order logic, and description logics
• Web languages: RDF and OWL

• References:
• Tutorial on Description Logics - Enrico Franconi:
• Tutorial on Ontology Languages for the Semantic Web - Ian Horrocks and Sean

Bechhofer:
• Tutorial on Semantic Web Best Practices - Alan Rector:

 Computational Ontologies, Bologna, September 2008

About Logic

• It allows us to represent information about a domain in a very straight-forward way
then deduce additional facts using one general domain-independent ”algorithm”:
deduction.

• It lends itself to large-scale, distributed-design problems.
• Each logic is made up of a syntax, a semantics, a definition of the reasoning problems

and the computational properties, and inference procedures for the reasoning
problems (possibly sound and complete).

• The syntax describes how to write correct sentences in the language.
• The semantics tells us what sentences mean according to an interpretation function

over a “domain”.
• The inference procedure derives results logically implied by a set of premises.

 Computational Ontologies, Bologna, September 2008

Formal languages: logics

• Logics are formal languages for representing information such that conclusions can
be drawn.

• Syntax defines the sentences in the language.
• Semantics defines the “meaning” of sentences; i.e., defines truth of a sentence in a

world.

• E.g., the language of arithmetic

• x + 2 ≥ y is a sentence; x2 + y > is not a sentence
• x + 2 ≥ y is true iff the number x + 2 is no less than the number y
• x + 2 ≥ y is true in a world where x = 7; y = 1
• x + 2 ≥ y is false in a world where x = 0; y = 6
• x + 2 ≥ x + 1 is true in every world

• Logics differ in terms of their representation power and computational complexity of
inference.

• The more restricted the representational power, the faster the inference in general.

 Computational Ontologies, Bologna, September 2008

The one and only logic?

• Logics of higher order
• Modal logics

• epistemic
• temporal and spatial
• ...

• Description logic
• Non-monotonic logic
• Intuitionistic logic
• ...

But: there are “standard approaches”:
propositional and predicate logic

 Computational Ontologies, Bologna, September 2008

Types of logic

• Logics are characterized by what they commit to as “primitives”
• Ontological commitment: what exists—facts? objects? time? beliefs
• Epistemological commitment: what states of knowledge?

Classical logics are based on the notion of TRUTH

Language Ontological Commitment
(What exists in the world)

Epistemological Commitment
(What an agent believes about facts)

Propositional logic
First-order logic
Temporal logic
Probability theory
Fuzzy logic

Facts
Facts, objects, relations
Facts, objects, relations, times
Facts
Degree of truth

True/False/Unknown
True/False/Unknown
True/False/Unknown
Degree of beliefs 0...1
Degree of beliefs 0...1

 Computational Ontologies, Bologna, September 2008

Entailment - Logical implication

• Knowledge Base KB entails sentence a
if and only if

a is true in all worlds where KB is true

• E.g., the KB containing “Roma won” and “Lazio won” entails “Either Roma won or Lazio
won”

 Computational Ontologies, Bologna, September 2008

Propositional Logic

• We can only talk about facts and whether or not they are true.
• In the worst case, we can use the brute force truth-table method to do

inference.
• Proof methods such as tableaux are generally more efficient, easier to

implement, and easier to understand.

 Computational Ontologies, Bologna, September 2008

Propositional Logics: basic ideas

• Statements
• The elementary building blocks of propositional logic are atomic statements that cannot be

decomposed any further: propositions. E.g.,

• “The block is red”
• “The proof of the pudding is in the eating”
• “It is raining”

• and logical connectives “and”, “or”, “not”, by which we can build propositional formulas.

• Reasoning
• when is a statement logically implied by a set of statements?

• Semantics: intuition
• Atomic statements can be true T or false F
• The truth value of formulas is determined by the truth value of the atoms

 Computational Ontologies, Bologna, September 2008

First Order Logic

• We can already do a lot with propositional logic.
• But it is unpleasant that we cannot access the structure of atomic sentences.
• Atomic formulas of propositional logic are too atomic – they are just statement which

my be true or false but which have no internal structure.
• In First Order Logic (FOL) the atomic formulas are interpreted as statements about

relationships between objects.
• We can talk about objects and relations between them, and we can quantify over

objects.
• Good for representing most interesting domains, but inference is not only expensive,

but may not terminate.

 Computational Ontologies, Bologna, September 2008

Predicate and Constants

• Let's consider the statements:
• Mary is female
• John is male
• Mary and John are siblings

• In propositional logic the above statements are atomic propositions:
• Mary-is-female
• John-is-male
• Mary-and-John-are-siblings

• In FOL atomic statements use predicates, with constants as argument:
• Female(mary)
• Male(john)
• Siblings(mary,john)

 Computational Ontologies, Bologna, September 2008

Variables and Quantifiers

• Let's consider the statements:
• Everybody is male or female
• A male is not a female

• In FOL predicates may have variables as arguments, whose value is bounded by
quantifers:
• ∀ x. Male(x) ∨ Female(x)
• ∀ x. Male(x) ⇒ ¬ Female(x)

• Deduction (why?):
• Mary is not male
• Not Male(mary)

 Computational Ontologies, Bologna, September 2008

Functions

• Let's consider the statement:
• The father of a person is male

• In FOL objects of the domain may be denoted by functions applied to (other)objects:
• ∀ x. Male(father(x))

 Computational Ontologies, Bologna, September 2008

Semantics of FOL: intuition

• Just like in propositional logic, a (complex) FOL formula may be true (or false)with
respect to a given interpretation.

• An interpretation specifies referents for
• constant symbols --> objects
• predicate symbols --> relations
• function symbols --> functional relations

• An atomic sentence P(t1;....; tn) is true in a given interpretation
iff the objects referred to by t1;....; tn
are in the relation referred to by the predicate P.

• An interpretation in which a formula is true is called a model for the formula.

 Computational Ontologies, Bologna, September 2008

Universal quantification

• Everyone in England is smart:
• ∀x(In(x, england) ⇒ Smart(x))

• (∀x(φ)) is equivalent to the conjunction of all possible instantiations in x of φ:
• In(kingJohn, england) ⇒ Smart(kingJohn)
• ∧ In(richard, england) ⇒ Smart(richard)
• ∧ In(england, england) ⇒ Smart(england)
• ∧ ...

• Typically, ⇒ is the main connective with ∀.

• Common mistake: using ∧ as the main connective with ∀:
∀x(In(x, england) ∧ Smart(x))
means “Everyone is in England and everyone is smart”

 Computational Ontologies, Bologna, September 2008

Existential quantification

• Someone in France is smart:
• ∃x(In(x, france) ∧ Smart(x))

• (∃x(φ)) is equivalent to the disjunction of all possible instantiations in x of φ
• In(kingJohn, france) ∧ Smart(kingJohn)
• ∨ In(richard, france) ∧ Smart(richard)
• ∨ In(france, france) ∧ Smart(france)
• ∨ ...

• Typically, ∧ is the main connective with ∃.

• Common mistake: using ⇒ as the main connective with ∃:
∃x(In(x, france)) ⇒ Smart(x)
is true if there is anyone who is not in France!

Introduction to Description Logics

Why Description Logics?

• If predicate logic is directly used without some kind of restriction, then the
expressive power is too high for having good computational properties and
efficient procedures.

27

What are Description Logics

• A family of logic based Knowledge Representation formalisms
• Descendants of Semantic Networks, Minskyʼs frames, and KL-ONE
• Describe domain in terms of concepts (classes), roles(relationships) and

individuals

• Distinguished by
• Formal semantics (model theoretic)

• Decidable fragments of FOL
• Closely related to Propositional Modal & Dynamic Logics

• Provision of inference services
• Sound and complete decision procedures for key problems
• Implemented systems (highly optimized)

28

A pragmatistʼs view of the history of Description Logics

• Informal Semantic Networks and Frames (pre 1980)
• Wood: Whatʼs in a Link; Brachman What IS-A is and IS-A isnʼt.

• First Formalisation (1980)
• Bobrow KRL, Brachman: KL-ONE

• All useful systems are intractable (1983)
• Brachman & Levesque: A fundamental tradeoff

• Hybrid systems: T-Box and A-Box
• All tractable systems are useless (1987-1990)

• Doyle and Patel: Two dogmas of Knowledge Representation

29

Short history of Description Logics

• Phase 1
• Incomplete systems (Back, Classic, Loom, . . .)
• Based on structural algorithms

• Phase 2
• Development of tableau algorithms and complexity results
• Tableau-based systems (Kris, Crack)
• Investigation of optimization techniques

• Phase 3
• Tableau algorithms for very expressive DLs
• Highly optimised tableau systems (FaCT, DLP, Racer)
• Relationship to modal logic and decidable fragments of FOL

30

Latest developments

• Phase 4
• Mature implementations
• Mainstream applications and Tools

• Databases
• Consistency of conceptual schemata (EER, UML etc.)
• Schema integration
• Query subsumption (w.r.t. a conceptual schema)

• Ontologies and Semantic Web (and Grid)
• Ontology engineering (design, maintenance, integration)
• Reasoning with ontology-based markup (meta-data)
• Service description and discovery

• Commercial implementations
• Cerebra system from Network Inference Ltd

31

DL Semantics

• Model theoretic semantics. An interpretation consists of
• A domain of discourse (a collection of objects)
• Functions mapping

• classes to set of objects
• properties to sets of pairs of objects

• Rules describe how to interpret the constructors and tell us when an interpretation is a
model.

• In DL, a class description is thus a characterization of the individuals that are
members of that class.

32

OWL Layering

• Three species of OWL
• OWL full is union of OWL syntax and RDF
• OWL DL restricted to FOL fragment (~ DAML+OIL)

• Corresponds to SHOIN(Dn) Description Logicc
• OWL Lite is “simpler” subset of OWL DL

• Semantic layering
• OWL DL semantics = OWL full semantics within DL fragment
• OWL Lite semantics = OWL DL semantics within Lite fragment

• DL semantics are definitive
• In principle: correspondence proof
• But: if Full disagrees with DL (in DL fragment), then Full is wrong

OWL Full

• No restriction on use of OWL vocabulary (as long as legal RDF)
• Classes as instances (and much more)

• RDF style model theory
• Reasoning using FOL engines

• via axiomatization
• Semantics should correspond with OWL DL for suitably restricted KBs

OWL DL

• Use of OWL vocabulary restricted
• Cannot be used to do “nasty things” (i.e., modify OWL)
• No classes as instances
• Defined by abstract syntax + mapping to RDF

• Standard DL/FOL model theory (definitive)
• Direct correspondence with (first order) logic

• Benefits from many years of DL research
• Well defined semantics
• Formal properties well understood (complexity, decidability)
• Known reasoning algorithms
• Implemented systems (highly optimized)

OWL Lite

• Like DL, but fewer constructs
• No explicit negation or union
• Restricted cardinality (zero or one)
• No nominals (oneOf)

• Semantics as per DL
• Reasoning via standard DL engines (+datatypes)

• E.g., FaCT, RACER, Cerebra, Pellet

• In practice, not really used.
• Possible alternative: ”tractable fragments”

OWL syntaxes

• Abstract syntax
• Used in the definition of the language and the DL/Lite semantics

• OWL in RDF (the “official” concrete syntax)
• RDF/XML presentation

• XML presentation syntax
• XML Schema definition

OWL DL Semantics

• Semantics defined by interpretations: I = (ΔI, ⋅I)
• I:concepts ➝ subset of ΔI

• I:properties ➝ binary relations over ΔI (subsets of ΔI × ΔI)
• I:individuals ➝ elements of ΔI

• Interpretation function ⋅I extended to concept expressions

OWL Class Constructors

Constructor Example Interpretation

Classes Human I(Human)

intersectionOf intersectionOf(Human Male) I(Human) ∩ I(Male)

unionOf unionOf(Doctor Lawyer) I(Doctor) ∪ I(Lawyer)

complementOf complementOf/Male) Δ \ I(Male)

oneOf oneOf(john mary) {I(john), I(mary)}

OWL CLass Constructors

Constructor Example Interpretation

someValuesFrom restriction(hasChild someValuesFrom Lawyer)
{x|∃y. 〈x,y〉∈ I(hasChild) ∧
y∈I(Lawyer)}}

allValuesFrom restriction(hasChild allValuesFrom Doctor)
{x|∀y. 〈x,y〉∈ I(hasChild) ⇒
y∈I(Doctor)}}

minCardinality restriction(hasChild minCardinality(2))) {x|#〈x,y〉∈ I(hasChild) ≥ 2}

maxCardinality restriction(hasChild maxCardinality (2)) {x|#〈x,y〉∈ I(hasChild) ≤ 2

OWL Axioms

• Axioms allow us to add further statements about arbitrary concept expressions and
properties
• Subclasses, Disjointness, Equivalence, transitivity of properties, etc.

• An interpretation is then a model of the axiom iff it satisfies every axiom in the model.

Axiom Example Interpretation

SubClassOf SubClassOf(Human Animal) I(Human) ⊆ I(Animal)

EquivalentClasses EquivalentClass(Man intersectionOf(Human Male)) I(Man) = I(Human) ∩ I(Male)

DisjointClasses DisjointClass(Animal Plant) I(Animal) ∩ I(Plant) = ∅

OWL Individual Axioms

Axiom Example Interpretation

Individual Individual(Valentina Type(Human)) I(Valentina) ∈ I(Human)

Fact Individual(Valentina value(worksWith Aldo)) I〈Valentina,Aldo〉∈ I(worksWith)

DifferentIndividuals DifferentIndividuals(Valentina Aldo) I(Valentina) ≠ I(Aldo)

SameIndividualAs SameIndividualAs(AldoGangemi
GangemiAsTutor) I(AldoGangemi) = I(GangemiAsTutor)

OWL Property Axioms

Axiom Example Interpretation

SubPropertyOf SubPropertyOf(hasMother hasParent) I(hasMother) ⊆ I(hasParent)

domain ObjectProperty(owns domain(Person)) ∀x.〈x,y〉∈ I(owns) ⇒ x ∈ I(Person)

range ObjectProperty(employs range(Person)) ∀x.〈x,y〉∈ I(employs) ⇒ y ∈ I(Person)

symmetric ObjectProperty(connects Symmetric) ∀x,y.〈x,y〉∈ I(connects) ⇒ 〈y,x〉∈ I(connects)

transitive ObjectProperty(hasPart Transitive)
∀x,y,z.〈x,y〉∈ I(hasPart) ∧ 〈y,z〉∈ I(hasPart) ⇒
〈x,z〉∈ I(hasPart)

inverseOf ObjectProperty(hasChild
inverseOf(hasParent)) I(hasChild) = I(hasParent−)

XML Datatypes in OWL

• OWL supports XML Schema primitive datatypes

• Clean separation between “object” classes and datatypes
• Disjoint interpretation domain: dI ⊆ ΔD, and ΔD ∩ ΔI = ∅
• Disjoint datatype properties: PID ⊆ ΔI × ΔD

• Philosophical reasons:
• Datatypes structured by built-in predicates
• Not appropriate to form new datatypes using ontology language

• Practical reasons:
• Ontology language remains simple and compact
• Semantic integrity of ontology language not compromised
• Implementability not compromised — can use hybrid reasoner

• Only need sound and complete decision procedure for dI1 ∩ ... ∩ dIn,
where dIi is a (possibly negated) datatype

Semantics

• An interpretation I satisfies an axiom if the interpretation of the axiom is true.
• I satisfies ontology or is a model of an ontology O (is a model of O) iff it satisfies every

axiom in O
• C subsumes D w.r.t. an ontology O iff for every model I OF O, I(D) ⊆ I(C)
• C is equivalent to D w.r.t an ontology O iff for every model I of O, I(C) = I(D)
• C is satisfiable w.r.t. O iff there exists some model I of O s.t. I(C) ≠ O
• An ontology O is consistent iff there exists some model I of O

