Languages

Aldo Gangemi Valentina Presutti

The Semantic Web Layers

RDF

- RDF stands for Resource Description Framework
- It is a W3C Recommendation
 - http://www.w3.org/RDF
- RDF is a graphical formalism (+ XML syntax + semantics)
 - for representing metadata
 - for describing the semantics of information in a machine-accessible way
- Provides a simple data model based on triples.

RDF Data Model

- Statements are <subject, predicate, object> triples:
 - <Sean,hasColleague,lan>
- Can be represented as a graph:

- Statements describe properties of resources
- A resource is any object that can be pointed to by a URI:
 - The generic set of all names/addresses that are short strings that refer to resources
 - a document, a picture, a paragraph on the Web, http://www.cs.man.ac.uk/
 index.html, a book in the library, a real person (?), isbn://0141184280
- Properties themselves are also resources (URIs)

Linking Statements

- The subject of one statement can be the object of another
- Such collections of statements form a directed, labeled graph

Note that the object of a triple can also be a "literal" (a string)

What does RDF give us?

- A mechanism for annotating data and resources.
- Single (simple) data model.
- Syntactic consistency between names (URIs).
- Low level integration of data.

RDF(S): RDF Schema

- RDF gives a formalism for meta data annotation, and a way to write it down in XML, but it does not give any special meaning to vocabulary such as subClassOf or type
- Interpretation is an arbitrary binary relation
- RDF Schema extends RDF with a schema vocabulary that allows you to define basic vocabulary terms and the relations between those terms
 - Class, type, subClassOf,
 - Property, subPropertyOf, range, domain
 - it gives "extra meaning" to particular RDF predicates and resources
 - this "extra meaning", or semantics, specifies how a term should be interpreted

RDF/RDF(S) "Liberality"

- No distinction between classes and instances (individuals)
- Properties can themselves have properties
- No distinction between language constructors and ontology vocabulary, so constructors can be applied to themselves/each other

What does RDF(S) give us?

- Ability to use simple schema/vocabularies when describing our resources.
- Consistent vocabulary use and sharing.
- Simple inference

Need for a web ontology language

- But RDFS not a suitable foundation for Semantic Web
 - Too weak to describe resources in sufficient detail
- Requirements for web ontology language:
 - Compatible with existing Web standards (XML, RDF, RDFS)
 - Easy to understand and use (based on familiar KR idioms)
 - Formally specified and of "adequate" expressive power
 - Possible to provide automated reasoning support

Some premises to web ontology design

- Some recall of logics: propositional logics, first order logic, and description logics
- Web languages: RDF and OWL

References:

- Tutorial on Description Logics Enrico Franconi:
- Tutorial on Ontology Languages for the Semantic Web Ian Horrocks and Sean Bechhofer:
- Tutorial on Semantic Web Best Practices Alan Rector:

About Logic

- It allows us to represent information about a domain in a very straight-forward way then deduce additional facts using one general domain-independent "algorithm": deduction.
- It lends itself to large-scale, distributed-design problems.
- Each logic is made up of a syntax, a semantics, a definition of the reasoning problems and the computational properties, and inference procedures for the reasoning problems (possibly sound and complete).
- The syntax describes how to write correct sentences in the language.
- The semantics tells us what sentences mean according to an interpretation function over a "domain".
- The inference procedure derives results logically implied by a set of premises.

Formal languages: logics

- Logics are formal languages for representing information such that conclusions can be drawn.
- Syntax defines the sentences in the language.
- Semantics defines the "meaning" of sentences; i.e., defines truth of a sentence in a world.
- E.g., the language of arithmetic
 - $x + 2 \ge y$ is a sentence; x2 + y > is not a sentence
 - $x + 2 \ge y$ is true iff the number x + 2 is no less than the number y
 - $x + 2 \ge y$ is true in a world where x = 7; y = 1
 - $x + 2 \ge y$ is false in a world where x = 0; y = 6
 - $x + 2 \ge x + 1$ is true in every world
- Logics differ in terms of their representation power and computational complexity of inference.
- The more restricted the representational power, the faster the inference in general.

The one and only logic?

- Logics of higher order
- Modal logics
 - epistemic
 - temporal and spatial
 - •
- Description logic
- Non-monotonic logic
- Intuitionistic logic
- •

But: there are "standard approaches":

propositional and predicate logic

Types of logic

- Logics are characterized by what they commit to as "primitives"
- Ontological commitment: what exists—facts? objects? time? beliefs
- Epistemological commitment: what states of knowledge?

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic First-order logic Temporal logic Probability theory Fuzzy logic	Facts Facts, objects, relations Facts, objects, relations, times Facts Degree of truth	True/False/Unknown True/False/Unknown True/False/Unknown Degree of beliefs 01 Degree of beliefs 01

Classical logics are based on the notion of TRUTH

Entailment - Logical implication

Knowledge Base KB entails sentence a
 if and only if

a is true in all worlds where KB is true

• E.g., the KB containing "Roma won" and "Lazio won" entails "Either Roma won or Lazio won"

Propositional Logic

- We can only talk about facts and whether or not they are true.
- In the worst case, we can use the brute force truth-table method to do inference.
- Proof methods such as tableaux are generally more efficient, easier to implement, and easier to understand.

Propositional Logics: basic ideas

Statements

- The elementary building blocks of propositional logic are atomic statements that cannot be decomposed any further: propositions. E.g.,
 - "The block is red"
 - "The proof of the pudding is in the eating"
 - "It is raining"
- and logical connectives "and", "or", "not", by which we can build propositional formulas.

Reasoning

when is a statement logically implied by a set of statements?

Semantics: intuition

- Atomic statements can be true T or false F
- The truth value of formulas is determined by the truth value of the atoms

First Order Logic

- We can already do a lot with propositional logic.
- But it is unpleasant that we cannot access the structure of atomic sentences.
- Atomic formulas of propositional logic are too atomic they are just statement which
 my be true or false but which have no internal structure.
- In First Order Logic (FOL) the atomic formulas are interpreted as statements about relationships between objects.
- We can talk about objects and relations between them, and we can quantify over objects.
- Good for representing most interesting domains, but inference is not only expensive, but may not terminate.

Predicate and Constants

- Let's consider the statements:
 - Mary is female
 - John is male
 - Mary and John are siblings
- In propositional logic the above statements are atomic propositions:
 - Mary-is-female
 - John-is-male
 - Mary-and-John-are-siblings
- In FOL atomic statements use predicates, with constants as argument:
 - Female(mary)
 - Male(john)
 - Siblings(mary,john)

Variables and Quantifiers

- Let's consider the statements:
 - Everybody is male or female
 - A male is not a female
- In FOL predicates may have variables as arguments, whose value is bounded by quantifers:
 - \forall x. Male(x) \lor Female(x)
 - \forall x. Male(x) $\Rightarrow \neg$ Female(x)
- Deduction (why?):
- Mary is not male
- Not Male(mary)

Functions

- Let's consider the statement:
 - The father of a person is male
- In FOL objects of the domain may be denoted by functions applied to (other)objects:
 - ∀ x. Male(father(x))

Semantics of FOL: intuition

- Just like in propositional logic, a (complex) FOL formula may be true (or false) with respect to a given interpretation.
- An interpretation specifies referents for
 - constant symbols --> objects
 - predicate symbols --> relations
 - function symbols --> functional relations
- An atomic sentence P(t₁;....; t_n) is true in a given interpretation iff the objects referred to by t₁;....; t_n are in the relation referred to by the predicate P.
- An interpretation in which a formula is true is called a model for the formula.

Universal quantification

- Everyone in England is smart:
 - $\forall x(In(x, england) \Rightarrow Smart(x))$
- $(\forall x(\phi))$ is equivalent to the conjunction of all possible instantiations in x of ϕ :
 - In(kingJohn, england) ⇒ Smart(kingJohn)
 - ∧ In(richard, england) ⇒ Smart(richard)
 - ∧ In(england, england) ⇒ Smart(england)
 - \ ...
- Typically, \Rightarrow is the main connective with \forall .
- Common mistake: using ∧ as the main connective with ∀:
 ∀x(ln(x, england) ∧ Smart(x))
 means "Everyone is in England and everyone is smart"

Existential quantification

- Someone in France is smart:
 - ∃x(In(x, france) ∧ Smart(x))
- $(\exists x(\phi))$ is equivalent to the disjunction of all possible instantiations in x of ϕ
 - In(kingJohn, france) ∧ Smart(kingJohn)
 - v In(richard, france) \(\times \) Smart(richard)
 - v In(france, france) \(\times \) Smart(france)
 - \ ...
- Typically, ∧ is the main connective with ∃.
- Common mistake: using ⇒ as the main connective with ∃:

```
\exists x(In(x, france)) \Rightarrow Smart(x)
```

is true if there is anyone who is not in France!

Introduction to Description Logics

Why Description Logics?

• If predicate logic is directly used without some kind of restriction, then the expressive power is too high for having good computational properties and efficient procedures.

What are Description Logics

- A family of logic based Knowledge Representation formalisms
 - Descendants of Semantic Networks, Minsky's frames, and KL-ONE
 - Describe domain in terms of concepts (classes), roles(relationships) and individuals
- Distinguished by
 - Formal semantics (model theoretic)
 - Decidable fragments of FOL
 - Closely related to Propositional Modal & Dynamic Logics
 - Provision of inference services
 - Sound and complete decision procedures for key problems
 - Implemented systems (highly optimized)

A pragmatist's view of the history of Description Logics

- Informal Semantic Networks and Frames (pre 1980)
 - Wood: What's in a Link; Brachman What IS-A is and IS-A isn't.
- First Formalisation (1980)
 - Bobrow KRL, Brachman: KL-ONE
- All useful systems are intractable (1983)
 - Brachman & Levesque: A fundamental tradeoff
 - Hybrid systems: T-Box and A-Box
- All tractable systems are useless (1987-1990)
 - Doyle and Patel: Two dogmas of Knowledge Representation

Short history of Description Logics

Phase 1

- Incomplete systems (Back, Classic, Loom, . . .)
- Based on structural algorithms

Phase 2

- Development of tableau algorithms and complexity results
- Tableau-based systems (Kris, Crack)
- Investigation of optimization techniques

Phase 3

- Tableau algorithms for very expressive DLs
- **Highly optimised** tableau systems (FaCT, DLP, Racer)
- Relationship to modal logic and decidable fragments of FOL

Latest developments

- Phase 4
 - Mature implementations
 - Mainstream applications and Tools
 - Databases
 - Consistency of conceptual schemata (EER, UML etc.)
 - Schema integration
 - Query subsumption (w.r.t. a conceptual schema)
 - Ontologies and Semantic Web (and Grid)
 - Ontology engineering (design, maintenance, integration)
 - Reasoning with ontology-based markup (meta-data)
 - Service description and discovery
 - Commercial implementations
 - Cerebra system from Network Inference Ltd

DL Semantics

- Model theoretic semantics. An interpretation consists of
 - A domain of discourse (a collection of objects)
 - Functions mapping
 - classes to set of objects
 - properties to sets of pairs of objects
 - Rules describe how to interpret the constructors and tell us when an interpretation is a model.
- In DL, a class description is thus a characterization of the individuals that are members of that class.

OWL Layering

Three species of OWL

- OWL full is union of OWL syntax and RDF
- OWL DL restricted to FOL fragment (~ DAML+OIL)
 - Corresponds to SHOIN(Dn) Description Logicc
- OWL Lite is "simpler" subset of OWL DL

Semantic layering

- OWL DL semantics = OWL full semantics within DL fragment
- OWL Lite semantics = OWL DL semantics within Lite fragment

DL semantics are definitive

- In principle: correspondence proof
- But: if Full disagrees with DL (in DL fragment), then Full is wrong

OWL Full

- No restriction on use of OWL vocabulary (as long as legal RDF)
 - Classes as instances (and much more)
- RDF style model theory
 - Reasoning using FOL engines
 - via axiomatization
 - Semantics should correspond with OWL DL for suitably restricted KBs

OWL DL

- Use of OWL vocabulary restricted
 - Cannot be used to do "nasty things" (i.e., modify OWL)
 - No classes as instances
 - Defined by abstract syntax + mapping to RDF
- Standard DL/FOL model theory (definitive)
 - Direct correspondence with (first order) logic
- Benefits from many years of DL research
 - Well defined semantics
 - Formal properties well understood (complexity, decidability)
 - Known reasoning algorithms
 - Implemented systems (highly optimized)

OWL Lite

- Like DL, but fewer constructs
 - No explicit negation or union
 - Restricted cardinality (zero or one)
 - No nominals (oneOf)
- Semantics as per DL
 - Reasoning via standard DL engines (+datatypes)
 - E.g., FaCT, RACER, Cerebra, Pellet
- In practice, not really used.
 - Possible alternative: "tractable fragments"

OWL syntaxes

- Abstract syntax
 - Used in the definition of the language and the DL/Lite semantics
- OWL in RDF (the "official" concrete syntax)
 - RDF/XML presentation
- XML presentation syntax
 - XML Schema definition

OWL DL Semantics

- Semantics defined by interpretations: $I = (\Delta^{l}, \cdot^{l})$
 - I:concepts → subset of Δ^I
 - *I:properties* \rightarrow *binary relations over* Δ^{l} (subsets of $\Delta^{l} \times \Delta^{l}$)
 - *I:individuals* \rightarrow *elements of* Δ^{I}
- Interpretation function · I extended to concept expressions

$$(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}} \quad (C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}} \quad (\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$$

$$\{x_n, \dots, x_n\}^{\mathcal{I}} = \{x_n^{\mathcal{I}}, \dots, x_n^{\mathcal{I}}\}$$

$$(\exists R.C)^{\mathcal{I}} = \{x \mid \exists y. \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$$

$$(\forall R.C)^{\mathcal{I}} = \{x \mid \forall y. (x, y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$$

$$(\leqslant nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \leqslant n\}$$

$$(\geqslant nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \geqslant n\}$$

OWL Class Constructors

Constructor	Example	Interpretation
Classes	Human	I(Human)
intersectionOf	intersectionOf(Human Male)	I(Human) ∩ I(Male)
unionOf	unionOf(Doctor Lawyer)	I(Doctor) ∪ I(Lawyer)
complementOf	complementOf/Male)	△ \ I(Male)
oneOf	oneOf(john mary)	{I(john), I(mary)}

OWL CLass Constructors

Constructor	Example	Interpretation
someValuesFrom	restriction(hasChild someValuesFrom Lawyer)	$\{x \mid \exists y. \langle x,y \rangle \in I(hasChild) \land y \in I(Lawyer)\}\}$
allValuesFrom	restriction(hasChild allValuesFrom Doctor)	$\{x \forall y. \langle x,y\rangle \in I(hasChild) \Rightarrow y\in I(Doctor)\}$
minCardinality	restriction(hasChild minCardinality(2)))	$\{x \# \langle x,y\rangle \in I(hasChild) \geq 2\}$
maxCardinality	restriction(hasChild maxCardinality (2))	$\{x \# \langle x,y \rangle \in I(hasChild) \leq 2$

OWL Axioms

- Axioms allow us to add further statements about arbitrary concept expressions and properties
 - Subclasses, Disjointness, Equivalence, transitivity of properties, etc.
- An interpretation is then a model of the axiom iff it satisfies every axiom in the model.

Axiom	Example	Interpretation
SubClassOf	SubClassOf(Human Animal)	I(Human) ⊆ I(Animal)
EquivalentClasses	EquivalentClass(Man intersectionOf(Human Male))	I(Man) = I(Human) ∩ I(Male)
DisjointClasses	DisjointClass(Animal Plant)	$I(Animal) \cap I(Plant) = \emptyset$

OWL Individual Axioms

Axiom	Example	Interpretation
Individual	Individual(Valentina Type(Human))	I(Valentina) ∈ I(Human)
Fact	Individual(Valentina value(worksWith Aldo))	I ⟨Valentina,Aldo⟩ ∈ I(worksWith)
DifferentIndividuals	DifferentIndividuals(Valentina Aldo)	I(Valentina) ≠ I(Aldo)
SameIndividualAs	SameIndividualAs(AldoGangemi GangemiAsTutor)	I(AldoGangemi) = I(GangemiAsTutor)

OWL Property Axioms

Axiom	Example	Interpretation
SubPropertyOf	SubPropertyOf(hasMother hasParent)	I(hasMother) ⊆ I(hasParent)
domain	ObjectProperty(owns domain(Person))	$\forall x. \langle x,y \rangle \in I(owns) \Rightarrow x \in I(Person)$
range	ObjectProperty(employs range(Person))	$\forall x. \langle x,y \rangle \in I(employs) \Rightarrow y \in I(Person)$
symmetric	ObjectProperty(connects Symmetric)	$\forall x,y. \langle x,y \rangle \in \textit{I(connects)} \Rightarrow \langle y,x \rangle \in \textit{I(connects)}$
transitive	ObjectProperty(hasPart Transitive)	$\forall x,y,z. \langle x,y \rangle \in I(hasPart) \land \langle y,z \rangle \in I(hasPart) \Rightarrow \langle x,z \rangle \in I(hasPart)$
inverseOf	ObjectProperty(hasChild inverseOf(hasParent))	I(hasChild) = I(hasParent⁻)

XML Datatypes in OWL

- OWL supports XML Schema primitive datatypes
- Clean separation between "object" classes and datatypes
 - Disjoint interpretation domain: $d^I \subseteq \Delta_D$, and $\Delta_D \cap \Delta^I = \emptyset$
 - Disjoint datatype properties: $P^{I}_{D} \subseteq \Delta^{I} \times \Delta_{D}$
- Philosophical reasons:
 - Datatypes structured by built-in predicates
 - Not appropriate to form new datatypes using ontology language
- Practical reasons:
 - Ontology language remains simple and compact
 - Semantic integrity of ontology language not compromised
 - Implementability not compromised can use hybrid reasoner
 - Only need sound and complete decision procedure for $d^{I_1} \cap ... \cap d^{I_n}$, where d^{I_1} is a (possibly negated) datatype

Semantics

- An interpretation I satisfies an axiom if the interpretation of the axiom is true.
- I satisfies ontology or is a model of an ontology O (is a model of O) iff it satisfies every axiom in O
- C subsumes D w.r.t. an ontology O iff for every model I OF O, $I(D) \subseteq I(C)$
- C is equivalent to D w.r.t an ontology O iff for every model I of O, I(C) = I(D)
- C is satisfiable w.r.t. O iff there exists some model I of O s.t. $I(C) \neq O$
- An ontology O is consistent iff there exists some model I of O